Full embeddings of almost split sequences over split-by-nilpotent extensions

Ibrahim Assem; Dan Zacharia

Colloquium Mathematicae (1999)

  • Volume: 81, Issue: 1, page 21-31
  • ISSN: 0010-1354

Abstract

top
Let R be a split extension of an artin algebra A by a nilpotent bimodule A Q A , and let M be an indecomposable non-projective A-module. We show that the almost split sequences ending with M in mod A and mod R coincide if and only if H o m A ( Q , τ A M ) = 0 and M A Q = 0 .

How to cite

top

Assem, Ibrahim, and Zacharia, Dan. "Full embeddings of almost split sequences over split-by-nilpotent extensions." Colloquium Mathematicae 81.1 (1999): 21-31. <http://eudml.org/doc/210727>.

@article{Assem1999,
abstract = {Let R be a split extension of an artin algebra A by a nilpotent bimodule $_A Q_A$, and let M be an indecomposable non-projective A-module. We show that the almost split sequences ending with M in mod A and mod R coincide if and only if $Hom_A (Q, τ_A M)$ = 0 and $M ⊗ _A Q = 0$.},
author = {Assem, Ibrahim, Zacharia, Dan},
journal = {Colloquium Mathematicae},
keywords = {Auslan-der-Reiten translate; split-by-nilpotent extension; almost split sequence; split-by-nilpotent extensions; almost split sequences; Auslander-Reiten translates; Artin algebras},
language = {eng},
number = {1},
pages = {21-31},
title = {Full embeddings of almost split sequences over split-by-nilpotent extensions},
url = {http://eudml.org/doc/210727},
volume = {81},
year = {1999},
}

TY - JOUR
AU - Assem, Ibrahim
AU - Zacharia, Dan
TI - Full embeddings of almost split sequences over split-by-nilpotent extensions
JO - Colloquium Mathematicae
PY - 1999
VL - 81
IS - 1
SP - 21
EP - 31
AB - Let R be a split extension of an artin algebra A by a nilpotent bimodule $_A Q_A$, and let M be an indecomposable non-projective A-module. We show that the almost split sequences ending with M in mod A and mod R coincide if and only if $Hom_A (Q, τ_A M)$ = 0 and $M ⊗ _A Q = 0$.
LA - eng
KW - Auslan-der-Reiten translate; split-by-nilpotent extension; almost split sequence; split-by-nilpotent extensions; almost split sequences; Auslander-Reiten translates; Artin algebras
UR - http://eudml.org/doc/210727
ER -

References

top
  1. [1] I. Assem and F. U. Coelho, Glueings of tilted algebras, J. Pure Appl. Algebra 96 (1994), 225-243. Zbl0821.16015
  2. [2] I. Assem and N. Marmaridis, Tilting modules over split-by-nilpotent extensions, Comm. Algebra 26 (1998), 1547-1555. Zbl0915.16007
  3. [3] M. Auslander and I. Reiten, Representation theory of artin algebras V, ibid. 5 (1997), 519-554. 
  4. [4] M. Auslander, I. Reiten and S. O. Smalο, Representation Theory of Artin Algebras, Cambridge Univ. Press, 1995. Zbl0834.16001
  5. [5] K. R. Fuller, *-Modules over ring extensions, Comm. Algebra 25 (1997), 2839-2860. Zbl0885.16019
  6. [6] D. Happel, Triangulated Categories in the Representation Theory of Finite Dimensional Algebras, London Math. Soc. Lecture Note Ser. 119, Cambridge Univ. Press, 1998. Zbl0635.16017
  7. [7] M. Hoshino, Trivial extensions of tilted algebras, Comm. Algebra 10 (1982), 1965-1999. Zbl0494.16014
  8. [8] D. Hughes and J. Waschbüsch, Trivial extensions of tilted algebras, Proc. London Math. Soc. 46 (1983), 347-364. Zbl0488.16021
  9. [9] N. Marmaridis, On extensions of abelian categories with applications to ring theory, J. Algebra 156 (1993), 50-64. Zbl0796.18007
  10. [10] C. M. Ringel, Tame Algebras and Integral Quadratic Forms, Lecture Notes in Math. 1099, Springer, 1984. 
  11. [11] A. Skowroński, Minimal representation-infinite artin algebras, Math. Proc. Cambridge Philos. Soc. 116 (1994), 229-243. Zbl0822.16010
  12. [12] H. Tachikawa, Representations of trivial extensions of hereditary algebras, in: Lecture Notes in Math. 832, Springer, 1980, 579-599. 
  13. [13] K. Yamagata, Extensions over hereditary artinian rings with self-dualities I, J. Algebra 73 (1981), 386-433. Zbl0471.16022

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.