Full embeddings of almost split sequences over split-by-nilpotent extensions
Colloquium Mathematicae (1999)
- Volume: 81, Issue: 1, page 21-31
- ISSN: 0010-1354
Access Full Article
topAbstract
topHow to cite
topAssem, Ibrahim, and Zacharia, Dan. "Full embeddings of almost split sequences over split-by-nilpotent extensions." Colloquium Mathematicae 81.1 (1999): 21-31. <http://eudml.org/doc/210727>.
@article{Assem1999,
abstract = {Let R be a split extension of an artin algebra A by a nilpotent bimodule $_A Q_A$, and let M be an indecomposable non-projective A-module. We show that the almost split sequences ending with M in mod A and mod R coincide if and only if $Hom_A (Q, τ_A M)$ = 0 and $M ⊗ _A Q = 0$.},
author = {Assem, Ibrahim, Zacharia, Dan},
journal = {Colloquium Mathematicae},
keywords = {Auslan-der-Reiten translate; split-by-nilpotent extension; almost split sequence; split-by-nilpotent extensions; almost split sequences; Auslander-Reiten translates; Artin algebras},
language = {eng},
number = {1},
pages = {21-31},
title = {Full embeddings of almost split sequences over split-by-nilpotent extensions},
url = {http://eudml.org/doc/210727},
volume = {81},
year = {1999},
}
TY - JOUR
AU - Assem, Ibrahim
AU - Zacharia, Dan
TI - Full embeddings of almost split sequences over split-by-nilpotent extensions
JO - Colloquium Mathematicae
PY - 1999
VL - 81
IS - 1
SP - 21
EP - 31
AB - Let R be a split extension of an artin algebra A by a nilpotent bimodule $_A Q_A$, and let M be an indecomposable non-projective A-module. We show that the almost split sequences ending with M in mod A and mod R coincide if and only if $Hom_A (Q, τ_A M)$ = 0 and $M ⊗ _A Q = 0$.
LA - eng
KW - Auslan-der-Reiten translate; split-by-nilpotent extension; almost split sequence; split-by-nilpotent extensions; almost split sequences; Auslander-Reiten translates; Artin algebras
UR - http://eudml.org/doc/210727
ER -
References
top- [1] I. Assem and F. U. Coelho, Glueings of tilted algebras, J. Pure Appl. Algebra 96 (1994), 225-243. Zbl0821.16015
- [2] I. Assem and N. Marmaridis, Tilting modules over split-by-nilpotent extensions, Comm. Algebra 26 (1998), 1547-1555. Zbl0915.16007
- [3] M. Auslander and I. Reiten, Representation theory of artin algebras V, ibid. 5 (1997), 519-554.
- [4] M. Auslander, I. Reiten and S. O. Smalο, Representation Theory of Artin Algebras, Cambridge Univ. Press, 1995. Zbl0834.16001
- [5] K. R. Fuller, *-Modules over ring extensions, Comm. Algebra 25 (1997), 2839-2860. Zbl0885.16019
- [6] D. Happel, Triangulated Categories in the Representation Theory of Finite Dimensional Algebras, London Math. Soc. Lecture Note Ser. 119, Cambridge Univ. Press, 1998. Zbl0635.16017
- [7] M. Hoshino, Trivial extensions of tilted algebras, Comm. Algebra 10 (1982), 1965-1999. Zbl0494.16014
- [8] D. Hughes and J. Waschbüsch, Trivial extensions of tilted algebras, Proc. London Math. Soc. 46 (1983), 347-364. Zbl0488.16021
- [9] N. Marmaridis, On extensions of abelian categories with applications to ring theory, J. Algebra 156 (1993), 50-64. Zbl0796.18007
- [10] C. M. Ringel, Tame Algebras and Integral Quadratic Forms, Lecture Notes in Math. 1099, Springer, 1984.
- [11] A. Skowroński, Minimal representation-infinite artin algebras, Math. Proc. Cambridge Philos. Soc. 116 (1994), 229-243. Zbl0822.16010
- [12] H. Tachikawa, Representations of trivial extensions of hereditary algebras, in: Lecture Notes in Math. 832, Springer, 1980, 579-599.
- [13] K. Yamagata, Extensions over hereditary artinian rings with self-dualities I, J. Algebra 73 (1981), 386-433. Zbl0471.16022
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.