Wold decomposition of the Hardy space and Blaschke products similar to a contraction

M. Stessin

Colloquium Mathematicae (1999)

  • Volume: 81, Issue: 2, page 271-284
  • ISSN: 0010-1354

Abstract

top
The classical Wold decomposition theorem applied to the multiplication by an inner function leads to a special decomposition of the Hardy space. In this paper we obtain norm estimates for componentwise projections associated with this decomposition. An application to operators similar to a contraction is given.

How to cite

top

Stessin, M.. "Wold decomposition of the Hardy space and Blaschke products similar to a contraction." Colloquium Mathematicae 81.2 (1999): 271-284. <http://eudml.org/doc/210739>.

@article{Stessin1999,
abstract = {The classical Wold decomposition theorem applied to the multiplication by an inner function leads to a special decomposition of the Hardy space. In this paper we obtain norm estimates for componentwise projections associated with this decomposition. An application to operators similar to a contraction is given.},
author = {Stessin, M.},
journal = {Colloquium Mathematicae},
language = {eng},
number = {2},
pages = {271-284},
title = {Wold decomposition of the Hardy space and Blaschke products similar to a contraction},
url = {http://eudml.org/doc/210739},
volume = {81},
year = {1999},
}

TY - JOUR
AU - Stessin, M.
TI - Wold decomposition of the Hardy space and Blaschke products similar to a contraction
JO - Colloquium Mathematicae
PY - 1999
VL - 81
IS - 2
SP - 271
EP - 284
AB - The classical Wold decomposition theorem applied to the multiplication by an inner function leads to a special decomposition of the Hardy space. In this paper we obtain norm estimates for componentwise projections associated with this decomposition. An application to operators similar to a contraction is given.
LA - eng
UR - http://eudml.org/doc/210739
ER -

References

top
  1. [1] P. R. Ahern and D. N. Clark, On inner functions with B p derivatives, Michigan Math. J. 23 (1976), 393-396. 
  2. [2] A. B. Aleksandrov, Multiplicity of boundary values of inner functions, Izv. Akad. Nauk Armyan. SSR Ser. Mat. 22 (1987), 490-503 (in Russian). 
  3. [3] A. B. Aleksandrov, Inner functions and related spaces of pseudocontinuable functions, Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 170 (1989), 7-33 (in Russian); English transl.: J. Soviet Math. 63 (2) (1993). Zbl0761.30017
  4. [4] W. B. Arveson, Subalgebras of C * -algebras, Acta Math. 123 (1969), 141-224. 
  5. [5] C. L. Belna, P. Colwell and G. Piranian, The radial limits of Blaschke products, Proc. Amer. Math. Soc. 93 (1985), 267-271. Zbl0582.30022
  6. [6] D. N. Clark, One dimensional perturbations of restricted shifts, J. Anal. Math. 25 (1972), 169-191. Zbl0252.47010
  7. [7] J. L. Doob, Measure Theory, Springer, New York, 1994. 
  8. [8] P. R. Halmos, Ten problems in Hilbert space, Bull. Amer. Math. Soc. 76 (1970), 887-933. Zbl0204.15001
  9. [9] P. R. Halmos, Shifts on Hilbert spaces, J. Reine Angew. Math. 208 (1961), 102-112. Zbl0107.09802
  10. [10] T. L. Lance and M. I. Stessin, Multiplication invariant subspaces of Hardy spaces, Canad. J. Math. 49 (1997), 100-118. Zbl0879.47015
  11. [11] P. Lax, Translation invariant subspaces, Acta Math. 101 (1959), 163-178. Zbl0085.09102
  12. [12] V. Mascioni, Ideals of the disk algebra, operators related to Hilbert space contractions and complete boundedness, Houston J. Math. 20 (1994), 299-311. Zbl0819.46038
  13. [13] J. von Neumann, Eine Spektraltheorie für allgemeine Operatoren eines unitären Raumes, Math. Nachr. 4 (1950/51), 258-281. Zbl0042.12301
  14. [14] V. I. Paulsen, Every completely polynomially bounded operator is similar to a contraction, J. Funct. Anal. 55 (1984), 1-17. Zbl0557.46035
  15. [15] A. G. Poltoratski, The boundary behavior of pseudocontinuable functions, St. Petersburg Math. J. 5 (1994), 389-406. 
  16. [16] A. G. Poltoratski, On the distributions of the boundary values of Cauchy integrals, Proc. Amer. Math. Soc. 124 (1996), 2455-2463. Zbl0855.30032
  17. [17] W. Rudin, Boundary values of continuous analytic functions, ibid. 7 (1956), 808-811. Zbl0073.29701
  18. [18] W. Rudin, Function Theory in the Unit Ball of C n , Springer, New York, 1980. Zbl0495.32001

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.