# Wold decomposition of the Hardy space and Blaschke products similar to a contraction

Colloquium Mathematicae (1999)

- Volume: 81, Issue: 2, page 271-284
- ISSN: 0010-1354

## Access Full Article

top## Abstract

top## How to cite

topStessin, M.. "Wold decomposition of the Hardy space and Blaschke products similar to a contraction." Colloquium Mathematicae 81.2 (1999): 271-284. <http://eudml.org/doc/210739>.

@article{Stessin1999,

abstract = {The classical Wold decomposition theorem applied to the multiplication by an inner function leads to a special decomposition of the Hardy space. In this paper we obtain norm estimates for componentwise projections associated with this decomposition. An application to operators similar to a contraction is given.},

author = {Stessin, M.},

journal = {Colloquium Mathematicae},

language = {eng},

number = {2},

pages = {271-284},

title = {Wold decomposition of the Hardy space and Blaschke products similar to a contraction},

url = {http://eudml.org/doc/210739},

volume = {81},

year = {1999},

}

TY - JOUR

AU - Stessin, M.

TI - Wold decomposition of the Hardy space and Blaschke products similar to a contraction

JO - Colloquium Mathematicae

PY - 1999

VL - 81

IS - 2

SP - 271

EP - 284

AB - The classical Wold decomposition theorem applied to the multiplication by an inner function leads to a special decomposition of the Hardy space. In this paper we obtain norm estimates for componentwise projections associated with this decomposition. An application to operators similar to a contraction is given.

LA - eng

UR - http://eudml.org/doc/210739

ER -

## References

top- [1] P. R. Ahern and D. N. Clark, On inner functions with ${B}^{p}$ derivatives, Michigan Math. J. 23 (1976), 393-396.
- [2] A. B. Aleksandrov, Multiplicity of boundary values of inner functions, Izv. Akad. Nauk Armyan. SSR Ser. Mat. 22 (1987), 490-503 (in Russian).
- [3] A. B. Aleksandrov, Inner functions and related spaces of pseudocontinuable functions, Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 170 (1989), 7-33 (in Russian); English transl.: J. Soviet Math. 63 (2) (1993). Zbl0761.30017
- [4] W. B. Arveson, Subalgebras of ${C}^{*}$-algebras, Acta Math. 123 (1969), 141-224.
- [5] C. L. Belna, P. Colwell and G. Piranian, The radial limits of Blaschke products, Proc. Amer. Math. Soc. 93 (1985), 267-271. Zbl0582.30022
- [6] D. N. Clark, One dimensional perturbations of restricted shifts, J. Anal. Math. 25 (1972), 169-191. Zbl0252.47010
- [7] J. L. Doob, Measure Theory, Springer, New York, 1994.
- [8] P. R. Halmos, Ten problems in Hilbert space, Bull. Amer. Math. Soc. 76 (1970), 887-933. Zbl0204.15001
- [9] P. R. Halmos, Shifts on Hilbert spaces, J. Reine Angew. Math. 208 (1961), 102-112. Zbl0107.09802
- [10] T. L. Lance and M. I. Stessin, Multiplication invariant subspaces of Hardy spaces, Canad. J. Math. 49 (1997), 100-118. Zbl0879.47015
- [11] P. Lax, Translation invariant subspaces, Acta Math. 101 (1959), 163-178. Zbl0085.09102
- [12] V. Mascioni, Ideals of the disk algebra, operators related to Hilbert space contractions and complete boundedness, Houston J. Math. 20 (1994), 299-311. Zbl0819.46038
- [13] J. von Neumann, Eine Spektraltheorie für allgemeine Operatoren eines unitären Raumes, Math. Nachr. 4 (1950/51), 258-281. Zbl0042.12301
- [14] V. I. Paulsen, Every completely polynomially bounded operator is similar to a contraction, J. Funct. Anal. 55 (1984), 1-17. Zbl0557.46035
- [15] A. G. Poltoratski, The boundary behavior of pseudocontinuable functions, St. Petersburg Math. J. 5 (1994), 389-406.
- [16] A. G. Poltoratski, On the distributions of the boundary values of Cauchy integrals, Proc. Amer. Math. Soc. 124 (1996), 2455-2463. Zbl0855.30032
- [17] W. Rudin, Boundary values of continuous analytic functions, ibid. 7 (1956), 808-811. Zbl0073.29701
- [18] W. Rudin, Function Theory in the Unit Ball of ${C}^{n}$, Springer, New York, 1980. Zbl0495.32001

## NotesEmbed ?

topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.