On the isomorphism problem for modular group algebras of elementary abelian-by-cyclic p-groups
Colloquium Mathematicae (1999)
- Volume: 82, Issue: 1, page 125-136
- ISSN: 0010-1354
Access Full Article
topAbstract
topHow to cite
topBagiński, Czesław. "On the isomorphism problem for modular group algebras of elementary abelian-by-cyclic p-groups." Colloquium Mathematicae 82.1 (1999): 125-136. <http://eudml.org/doc/210745>.
@article{Bagiński1999,
abstract = {Let G be a finite p-group and let F be the field of p elements. It is shown that if G is elementary abelian-by-cyclic then the isomorphism type of G is determined by FG.},
author = {Bagiński, Czesław},
journal = {Colloquium Mathematicae},
keywords = {isomorphism problem; finite -groups; group rings; units},
language = {eng},
number = {1},
pages = {125-136},
title = {On the isomorphism problem for modular group algebras of elementary abelian-by-cyclic p-groups},
url = {http://eudml.org/doc/210745},
volume = {82},
year = {1999},
}
TY - JOUR
AU - Bagiński, Czesław
TI - On the isomorphism problem for modular group algebras of elementary abelian-by-cyclic p-groups
JO - Colloquium Mathematicae
PY - 1999
VL - 82
IS - 1
SP - 125
EP - 136
AB - Let G be a finite p-group and let F be the field of p elements. It is shown that if G is elementary abelian-by-cyclic then the isomorphism type of G is determined by FG.
LA - eng
KW - isomorphism problem; finite -groups; group rings; units
UR - http://eudml.org/doc/210745
ER -
References
top- [1] C. Bagiński, The isomorphism question for modular group algebras of metacyclic p-groups, Proc. Amer. Math. Soc. 104 (1988), 39-42. Zbl0663.20006
- [2] C. Bagiński and A. Caranti, The modular group algebras of p-groups of maximal class, Canad. J. Math. 40 (1988), 1422-1435. Zbl0665.20003
- [3] B. Huppert, Endliche Gruppen I, Springer, Berlin, 1983. Zbl0217.07201
- [4] R. Sandling, Units in the modular group algebra of a finite abelian p-group, J. Pure Appl. Algebra 33 (1984), 337-346. Zbl0543.20008
- [5] R. Sandling, The isomorphism problem for group rings: A survey, in: Lecture Notes in Math. 1142, Springer, Berlin, 1985, 256-288.
- [6] R. Sandling, The modular group algebra of a central-elementary-by-abelian p-group, Arch. Math. (Basel) 52 (1989), 22-27. Zbl0632.16011
- [7] R. Sandling, The modular group algebra problem for small p-groups of maximal class, Canad. J. Math. 48 (1996), 1064-1078. Zbl0863.20003
- [8] S. Sehgal, Topics in Group Rings, Pure Appl. Math. 50, Marcel Dekker, New York, 1978.
- [9] U. H. M. Webb, An elementary proof of Gaschütz' theorem, Arch. Math. (Basel) 35 (1980), 23-26. Zbl0423.20022
- [10] M. Wursthorn, Isomorphism of modular group algebras: An algorithm and its application to groups of order , J. Symbolic Comput. 15 (1993), 211-227. Zbl0782.20001
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.