# Complexity of the class of Peano functions

K. Omiljanowski; S. Solecki; J. Zielinski

Colloquium Mathematicae (2000)

- Volume: 83, Issue: 1, page 101-105
- ISSN: 0010-1354

## Access Full Article

top## Abstract

top## How to cite

topOmiljanowski, K., Solecki, S., and Zielinski, J.. "Complexity of the class of Peano functions." Colloquium Mathematicae 83.1 (2000): 101-105. <http://eudml.org/doc/210765>.

@article{Omiljanowski2000,

abstract = {We evaluate the descriptive set theoretic complexity of the space of continuous surjections from $ℝ^m$ to $ℝ^n$.},

author = {Omiljanowski, K., Solecki, S., Zielinski, J.},

journal = {Colloquium Mathematicae},

keywords = {Peano functions; complete; co-analytic complete},

language = {eng},

number = {1},

pages = {101-105},

title = {Complexity of the class of Peano functions},

url = {http://eudml.org/doc/210765},

volume = {83},

year = {2000},

}

TY - JOUR

AU - Omiljanowski, K.

AU - Solecki, S.

AU - Zielinski, J.

TI - Complexity of the class of Peano functions

JO - Colloquium Mathematicae

PY - 2000

VL - 83

IS - 1

SP - 101

EP - 105

AB - We evaluate the descriptive set theoretic complexity of the space of continuous surjections from $ℝ^m$ to $ℝ^n$.

LA - eng

KW - Peano functions; complete; co-analytic complete

UR - http://eudml.org/doc/210765

ER -

## References

top- [1] J. J. Charatonik and T. Maćkowiak, Around Effros' theorem, Trans. Amer. Math. Soc. 298 (1986), 579-602. Zbl0608.54012
- [2] E. G. Effros, Transformation groups and C*-algebras, Ann. of Math. 81 (1965), 38-55. Zbl0152.33203
- [3] A. S. Kechris, On the concept of ${\Pi}_{1}^{1}$-completeness, Proc. Amer. Math. Soc. 125 (1997), 1811-1814.
- [4] A. S. Kechris, Classical Descriptive Set Theory, Springer, 1995.
- [5] P. Krupski, Homogeneity and Cantor manifolds, Proc. Amer. Math. Soc. 109 (1990), 1135-1142. Zbl0714.54035

## NotesEmbed ?

topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.