Complexity of the class of Peano functions
K. Omiljanowski; S. Solecki; J. Zielinski
Colloquium Mathematicae (2000)
- Volume: 83, Issue: 1, page 101-105
- ISSN: 0010-1354
Access Full Article
topAbstract
topHow to cite
topOmiljanowski, K., Solecki, S., and Zielinski, J.. "Complexity of the class of Peano functions." Colloquium Mathematicae 83.1 (2000): 101-105. <http://eudml.org/doc/210765>.
@article{Omiljanowski2000,
abstract = {We evaluate the descriptive set theoretic complexity of the space of continuous surjections from $ℝ^m$ to $ℝ^n$.},
author = {Omiljanowski, K., Solecki, S., Zielinski, J.},
journal = {Colloquium Mathematicae},
keywords = {Peano functions; complete; co-analytic complete},
language = {eng},
number = {1},
pages = {101-105},
title = {Complexity of the class of Peano functions},
url = {http://eudml.org/doc/210765},
volume = {83},
year = {2000},
}
TY - JOUR
AU - Omiljanowski, K.
AU - Solecki, S.
AU - Zielinski, J.
TI - Complexity of the class of Peano functions
JO - Colloquium Mathematicae
PY - 2000
VL - 83
IS - 1
SP - 101
EP - 105
AB - We evaluate the descriptive set theoretic complexity of the space of continuous surjections from $ℝ^m$ to $ℝ^n$.
LA - eng
KW - Peano functions; complete; co-analytic complete
UR - http://eudml.org/doc/210765
ER -
References
top- [1] J. J. Charatonik and T. Maćkowiak, Around Effros' theorem, Trans. Amer. Math. Soc. 298 (1986), 579-602. Zbl0608.54012
- [2] E. G. Effros, Transformation groups and C*-algebras, Ann. of Math. 81 (1965), 38-55. Zbl0152.33203
- [3] A. S. Kechris, On the concept of -completeness, Proc. Amer. Math. Soc. 125 (1997), 1811-1814.
- [4] A. S. Kechris, Classical Descriptive Set Theory, Springer, 1995.
- [5] P. Krupski, Homogeneity and Cantor manifolds, Proc. Amer. Math. Soc. 109 (1990), 1135-1142. Zbl0714.54035
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.