Fundamental solutions for translation and rotation invariant differential operators on the Heisenberg group

Priscilla Gorelli

Colloquium Mathematicae (2000)

  • Volume: 83, Issue: 2, page 183-200
  • ISSN: 0010-1354

How to cite

top

Gorelli, Priscilla. "Fundamental solutions for translation and rotation invariant differential operators on the Heisenberg group." Colloquium Mathematicae 83.2 (2000): 183-200. <http://eudml.org/doc/210780>.

@article{Gorelli2000,
abstract = {},
author = {Gorelli, Priscilla},
journal = {Colloquium Mathematicae},
keywords = {Heisenberg group; solvability; left invariant differential operators; fundamental solution},
language = {eng},
number = {2},
pages = {183-200},
title = {Fundamental solutions for translation and rotation invariant differential operators on the Heisenberg group},
url = {http://eudml.org/doc/210780},
volume = {83},
year = {2000},
}

TY - JOUR
AU - Gorelli, Priscilla
TI - Fundamental solutions for translation and rotation invariant differential operators on the Heisenberg group
JO - Colloquium Mathematicae
PY - 2000
VL - 83
IS - 2
SP - 183
EP - 200
AB -
LA - eng
KW - Heisenberg group; solvability; left invariant differential operators; fundamental solution
UR - http://eudml.org/doc/210780
ER -

References

top
  1. [1] C. Benson, A. H. Dooley and G. Ratcliff, Fundamental solutions for powers of the Heisenberg sub-laplacian}, Illinois J. Math. 37 (1993), 455-476. Zbl0789.22012
  2. [2] C. Benson, J. Jenkins, G. Ratcliff and T. Worku, Spectra for Gelfand pairs associated with the Heisenberg group, Colloq. Math. 71 (1996), 305-328. Zbl0876.22011
  3. [3] J. Bochnak, M. Coste et M.-F. Roy, Géométrie Algébrique Réelle, Ergeb. Math. Grenzgeb. 12, Springer, Berlin, 1987. 
  4. [4] W. Chang, Invariant differential operators and P-convexity of solvable Lie groups, Adv. Math. 46 (1982), 284-304. Zbl0506.22012
  5. [5] A. Erdélyi, W. Magnus, F. Oberhettinger and F. G. Tricomi, Higher Transcendental Functions, Vol. 2, McGraw-Hill, 1953. Zbl0051.30303
  6. [6] G. B. Folland and E. M. Stein, Estimates for the v e r l i n e b complex and analysis on the Heisenberg group, Comm. Pure Appl. Math. 27 (1974), 429-522. Zbl0293.35012
  7. [7] L. Hörmander, Analysis of Linear Partial Differential Operators II, Springer, Berlin, 1983. Zbl0521.35002
  8. [8] L. Schwartz, z Théorie des distributions. Tome I, Hermann, Paris, 1957. 
  9. [9] E. M. Stein, An example on the Heisenberg group related to the Lewy operator, Invent. Math. 69 (1982), 209-216. Zbl0515.58032
  10. [10] G. Szegő, Orthogonal Polynomials, Colloq.Publ. 23, Amer. Math. Soc., 1975. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.