A geometric estimate for a periodic Schrödinger operator

Thomas Friedrich

Colloquium Mathematicae (2000)

  • Volume: 83, Issue: 2, page 209-216
  • ISSN: 0010-1354

Abstract

top
We estimate from below by geometric data the eigenvalues of the periodic Sturm-Liouville operator - 4 d 2 / d s 2 + κ 2 ( s ) with potential given by the curvature of a closed curve.

How to cite

top

Friedrich, Thomas. "A geometric estimate for a periodic Schrödinger operator." Colloquium Mathematicae 83.2 (2000): 209-216. <http://eudml.org/doc/210782>.

@article{Friedrich2000,
abstract = {We estimate from below by geometric data the eigenvalues of the periodic Sturm-Liouville operator $-4\{d^2\}/\{ds^2\} + κ^2(s)$ with potential given by the curvature of a closed curve.},
author = {Friedrich, Thomas},
journal = {Colloquium Mathematicae},
keywords = {spectrum; Fenchel inequality; Schrödinger operators; surfaces; Dirac operator; periodic Schrödinger operators},
language = {eng},
number = {2},
pages = {209-216},
title = {A geometric estimate for a periodic Schrödinger operator},
url = {http://eudml.org/doc/210782},
volume = {83},
year = {2000},
}

TY - JOUR
AU - Friedrich, Thomas
TI - A geometric estimate for a periodic Schrödinger operator
JO - Colloquium Mathematicae
PY - 2000
VL - 83
IS - 2
SP - 209
EP - 216
AB - We estimate from below by geometric data the eigenvalues of the periodic Sturm-Liouville operator $-4{d^2}/{ds^2} + κ^2(s)$ with potential given by the curvature of a closed curve.
LA - eng
KW - spectrum; Fenchel inequality; Schrödinger operators; surfaces; Dirac operator; periodic Schrödinger operators
UR - http://eudml.org/doc/210782
ER -

References

top
  1. [1] I. Agricola and T. Friedrich, Upper bounds for the first eigenvalue of the Dirac operator on surfaces, J. Geom. Phys. 30 (1999), 1-22. Zbl0941.58018
  2. [2] C. Bär, Lower eigenvalues estimates for Dirac operators, Math. Ann. 293 (1992), 39-46. Zbl0741.58046
  3. [3] T. Friedrich, Der erste Eigenwert des Dirac-Operators einer kompakten Riemann- schen Mannigfaltigkeit nichtnegativer Skalarkrümmung, Math. Nachr. 97 (1980), 117-146. Zbl0462.53027
  4. [4] T. Friedrich, Zur Abhängigkeit des Dirac-Operators von der Spin-Struktur, Colloq. Math. 48 (1984), 57-62. Zbl0542.53026
  5. [5] T. Friedrich, On the spinor representation of surfaces in Euclidean 3 -spaces, J. Geom. Phys. 28 (1998), 143-157. Zbl0966.53042
  6. [6] J. Lott, Eigenvalue bounds for the Dirac operator, Pacific J. Math. 125 (1986), 117-128. Zbl0605.58044
  7. [7] U. Pinkall, Hopf tori in S 3 , Invent. Math. 81 (1985), 379-386. 
  8. [8] T. J. Willmore, Riemannian Geometry, Clarendon Press, Oxford, 1996. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.