Some remarks on Bochner-Riesz means

S. Thangavelu

Colloquium Mathematicae (2000)

  • Volume: 83, Issue: 2, page 217-230
  • ISSN: 0010-1354

Abstract

top
We study L p norm convergence of Bochner-Riesz means S R δ f associated with certain non-negative differential operators. When the kernel S R m ( x , y ) satisfies a weak estimate for large values of m we prove L p norm convergence of S R δ f for δ > n|1/p-1/2|, 1 < p < ∞, where n is the dimension of the underlying manifold.

How to cite

top

Thangavelu, S.. "Some remarks on Bochner-Riesz means." Colloquium Mathematicae 83.2 (2000): 217-230. <http://eudml.org/doc/210783>.

@article{Thangavelu2000,
abstract = {We study $L^p$ norm convergence of Bochner-Riesz means $S_R^δ f$ associated with certain non-negative differential operators. When the kernel $S_R^m(x,y)$ satisfies a weak estimate for large values of m we prove $L^p$ norm convergence of $S_R^δ f$ for δ > n|1/p-1/2|, 1 < p < ∞, where n is the dimension of the underlying manifold.},
author = {Thangavelu, S.},
journal = {Colloquium Mathematicae},
keywords = {unitary representations; Schrödinger operators; Bochner-Riesz means; nilpotent groups; Rockland operators; Heisenberg group; summability; spectral resolution},
language = {eng},
number = {2},
pages = {217-230},
title = {Some remarks on Bochner-Riesz means},
url = {http://eudml.org/doc/210783},
volume = {83},
year = {2000},
}

TY - JOUR
AU - Thangavelu, S.
TI - Some remarks on Bochner-Riesz means
JO - Colloquium Mathematicae
PY - 2000
VL - 83
IS - 2
SP - 217
EP - 230
AB - We study $L^p$ norm convergence of Bochner-Riesz means $S_R^δ f$ associated with certain non-negative differential operators. When the kernel $S_R^m(x,y)$ satisfies a weak estimate for large values of m we prove $L^p$ norm convergence of $S_R^δ f$ for δ > n|1/p-1/2|, 1 < p < ∞, where n is the dimension of the underlying manifold.
LA - eng
KW - unitary representations; Schrödinger operators; Bochner-Riesz means; nilpotent groups; Rockland operators; Heisenberg group; summability; spectral resolution
UR - http://eudml.org/doc/210783
ER -

References

top
  1. [1] A. Bonami et J. L. Clerc, Sommes de Cesàro et multiplicateurs des développements en harmoniques sphériques, Trans. Amer. Math. Soc. 183 (1973), 223-263. 
  2. [2] L. Carleson and P. Sjölin, Oscillatory integrals and multiplier problem for the disc, Studia Math. 44 (1972), 287-299. Zbl0215.18303
  3. [3] J. Dziubański, W. Hebisch and J. Zienkiewicz, Note on semigroups generated by positive Rockland operators on graded homogeneous groups, ibid. 110 (1994), 115-126. Zbl0833.43009
  4. [4] C. Fefferman, A note on spherical summation multipliers, Israel J. Math. 15 (1972), 44-52. 
  5. [5] G. Folland and E. Stein, Hardy Spaces on Homogeneous Groups, Princeton Univ., Princeton, 1982. Zbl0508.42025
  6. [6] W. Hebisch, Almost everywhere summability of eigenfunction expansions associated to elliptic operators, Studia Math. 96 (1990), 263-275. Zbl0716.35053
  7. [7] B. Helffer et J. Nourrigat, Caractérisation des opérateurs hypoelliptiques homogènes à gauche sur un groupe nilpotent gradué, Comm. Partial Differential Equations 4 (1979), 899-958. Zbl0423.35040
  8. [8] L. Hörmander, On the Riesz means of spectral functions and eigenfunction expansions for elliptic differential operators, in: Some Recent Advances in the Basic Sciences, Vol. 2, Yeshiva Univ., New York, 1969, 155-202. 
  9. [9] A. Hulanicki, A functional calculus for Rockland operators on nilpotent Lie groups, Studia Math. 78 (1984), 253-266. Zbl0595.43007
  10. [10] A. Hulanicki and J. Jenkins, Almost everywhere summability on nilmanifolds, Trans. Amer. Math. Soc. 278 (1983), 703-715. Zbl0516.43010
  11. [11] A. Hulanicki and J. Jenkins, Nilpotent Lie groups and summability of eigenfunction expansions of Schrödinger operators, Studia Math. 80 (1984), 235-244. Zbl0564.43007
  12. [12] G. Karadzhov, Riesz summability of multiple Hermite series in L p spaces, C. R. Acad. Bulgare Sci. 47 (1994), 5-8. Zbl0829.40003
  13. [13] C. E. Kenig, R. Stanton and P. Tomas, Divergence of eigenfunction expansions, J. Funct. Anal. 46 (1982), 28-44. Zbl0506.47014
  14. [14] G. Mauceri, Riesz means for the eigenfunction expansions for a class of hypoelliptic differential operators, Ann. Inst. Fourier (Grenoble) 31 (1981), no. 4, 115-140. Zbl0455.35039
  15. [15] G. Mauceri and S. Meda, Vector valued multipliers on stratified groups, Rev. Mat. Iberoamericana 6 (1990), 141-154. Zbl0763.43005
  16. [16] B. S. Mitjagin [B. S. Mityagin], Divergenz von Spektralentwicklungen in L p -Räumen, in: Linear Operators and Approximation II, Internat. Ser. Numer. Math. 25, Birkhäuser, Basel, 1974, 521-530. 
  17. [17] D. Müller and E. M. Stein, On spectral multipliers for Heisenberg and related groups, J. Math. Pures Appl. 73 (1994), 413-440. Zbl0838.43011
  18. [18] J. Peetre, Remarks on eigenfunction expansions for elliptic differential operators with constant coefficients, Math. Scand. 15 (1964), 83-97. Zbl0131.09802
  19. [19] J. Peetre, Some estimates for spectral functions, Math. Z. 92 (1966), 146-153. Zbl0151.20204
  20. [20] C. D. Sogge, Concerning the L p norm of spectral clusters for second order elliptic operators on compact manifolds, J. Funct. Anal. 77 (1988), 123-134. 
  21. [21] C. D. Sogge, On the convergence of Riesz means on compact manifolds, Ann. of Math. 126 (1987), 439-447. Zbl0653.35068
  22. [22] E. Stein, Singular Integrals and Differentiability Properties of Functions, Princeton Univ. Press, Princeton, 1971. 
  23. [23] K. Stempak and J. Zienkiewicz, Twisted convolution and Riesz means, J. Anal. Math. 76 (1998), 93-107. Zbl0924.42011
  24. [24] S. Thangavelu, Lectures on Hermite and Laguerre Expansions, Princeton Univ. Press, Princeton, 1993. 
  25. [25] S. Thangavelu, Hermite and special Hermite expansions revisited, Duke Math. J. 94 (1998), 257-278. Zbl0945.42014
  26. [26] S. Thangavelu, Harmonic Analysis on the Heisenberg Group, Progr. Math. 159, Birkhäuser, Boston, 1998 Zbl0892.43001

NotesEmbed ?

top

You must be logged in to post comments.