Some remarks on Bochner-Riesz means

S. Thangavelu

Colloquium Mathematicae (2000)

  • Volume: 83, Issue: 2, page 217-230
  • ISSN: 0010-1354

Abstract

top
We study L p norm convergence of Bochner-Riesz means S R δ f associated with certain non-negative differential operators. When the kernel S R m ( x , y ) satisfies a weak estimate for large values of m we prove L p norm convergence of S R δ f for δ > n|1/p-1/2|, 1 < p < ∞, where n is the dimension of the underlying manifold.

How to cite

top

Thangavelu, S.. "Some remarks on Bochner-Riesz means." Colloquium Mathematicae 83.2 (2000): 217-230. <http://eudml.org/doc/210783>.

@article{Thangavelu2000,
abstract = {We study $L^p$ norm convergence of Bochner-Riesz means $S_R^δ f$ associated with certain non-negative differential operators. When the kernel $S_R^m(x,y)$ satisfies a weak estimate for large values of m we prove $L^p$ norm convergence of $S_R^δ f$ for δ > n|1/p-1/2|, 1 < p < ∞, where n is the dimension of the underlying manifold.},
author = {Thangavelu, S.},
journal = {Colloquium Mathematicae},
keywords = {unitary representations; Schrödinger operators; Bochner-Riesz means; nilpotent groups; Rockland operators; Heisenberg group; summability; spectral resolution},
language = {eng},
number = {2},
pages = {217-230},
title = {Some remarks on Bochner-Riesz means},
url = {http://eudml.org/doc/210783},
volume = {83},
year = {2000},
}

TY - JOUR
AU - Thangavelu, S.
TI - Some remarks on Bochner-Riesz means
JO - Colloquium Mathematicae
PY - 2000
VL - 83
IS - 2
SP - 217
EP - 230
AB - We study $L^p$ norm convergence of Bochner-Riesz means $S_R^δ f$ associated with certain non-negative differential operators. When the kernel $S_R^m(x,y)$ satisfies a weak estimate for large values of m we prove $L^p$ norm convergence of $S_R^δ f$ for δ > n|1/p-1/2|, 1 < p < ∞, where n is the dimension of the underlying manifold.
LA - eng
KW - unitary representations; Schrödinger operators; Bochner-Riesz means; nilpotent groups; Rockland operators; Heisenberg group; summability; spectral resolution
UR - http://eudml.org/doc/210783
ER -

References

top
  1. [1] A. Bonami et J. L. Clerc, Sommes de Cesàro et multiplicateurs des développements en harmoniques sphériques, Trans. Amer. Math. Soc. 183 (1973), 223-263. 
  2. [2] L. Carleson and P. Sjölin, Oscillatory integrals and multiplier problem for the disc, Studia Math. 44 (1972), 287-299. Zbl0215.18303
  3. [3] J. Dziubański, W. Hebisch and J. Zienkiewicz, Note on semigroups generated by positive Rockland operators on graded homogeneous groups, ibid. 110 (1994), 115-126. Zbl0833.43009
  4. [4] C. Fefferman, A note on spherical summation multipliers, Israel J. Math. 15 (1972), 44-52. 
  5. [5] G. Folland and E. Stein, Hardy Spaces on Homogeneous Groups, Princeton Univ., Princeton, 1982. Zbl0508.42025
  6. [6] W. Hebisch, Almost everywhere summability of eigenfunction expansions associated to elliptic operators, Studia Math. 96 (1990), 263-275. Zbl0716.35053
  7. [7] B. Helffer et J. Nourrigat, Caractérisation des opérateurs hypoelliptiques homogènes à gauche sur un groupe nilpotent gradué, Comm. Partial Differential Equations 4 (1979), 899-958. Zbl0423.35040
  8. [8] L. Hörmander, On the Riesz means of spectral functions and eigenfunction expansions for elliptic differential operators, in: Some Recent Advances in the Basic Sciences, Vol. 2, Yeshiva Univ., New York, 1969, 155-202. 
  9. [9] A. Hulanicki, A functional calculus for Rockland operators on nilpotent Lie groups, Studia Math. 78 (1984), 253-266. Zbl0595.43007
  10. [10] A. Hulanicki and J. Jenkins, Almost everywhere summability on nilmanifolds, Trans. Amer. Math. Soc. 278 (1983), 703-715. Zbl0516.43010
  11. [11] A. Hulanicki and J. Jenkins, Nilpotent Lie groups and summability of eigenfunction expansions of Schrödinger operators, Studia Math. 80 (1984), 235-244. Zbl0564.43007
  12. [12] G. Karadzhov, Riesz summability of multiple Hermite series in L p spaces, C. R. Acad. Bulgare Sci. 47 (1994), 5-8. Zbl0829.40003
  13. [13] C. E. Kenig, R. Stanton and P. Tomas, Divergence of eigenfunction expansions, J. Funct. Anal. 46 (1982), 28-44. Zbl0506.47014
  14. [14] G. Mauceri, Riesz means for the eigenfunction expansions for a class of hypoelliptic differential operators, Ann. Inst. Fourier (Grenoble) 31 (1981), no. 4, 115-140. Zbl0455.35039
  15. [15] G. Mauceri and S. Meda, Vector valued multipliers on stratified groups, Rev. Mat. Iberoamericana 6 (1990), 141-154. Zbl0763.43005
  16. [16] B. S. Mitjagin [B. S. Mityagin], Divergenz von Spektralentwicklungen in L p -Räumen, in: Linear Operators and Approximation II, Internat. Ser. Numer. Math. 25, Birkhäuser, Basel, 1974, 521-530. 
  17. [17] D. Müller and E. M. Stein, On spectral multipliers for Heisenberg and related groups, J. Math. Pures Appl. 73 (1994), 413-440. Zbl0838.43011
  18. [18] J. Peetre, Remarks on eigenfunction expansions for elliptic differential operators with constant coefficients, Math. Scand. 15 (1964), 83-97. Zbl0131.09802
  19. [19] J. Peetre, Some estimates for spectral functions, Math. Z. 92 (1966), 146-153. Zbl0151.20204
  20. [20] C. D. Sogge, Concerning the L p norm of spectral clusters for second order elliptic operators on compact manifolds, J. Funct. Anal. 77 (1988), 123-134. 
  21. [21] C. D. Sogge, On the convergence of Riesz means on compact manifolds, Ann. of Math. 126 (1987), 439-447. Zbl0653.35068
  22. [22] E. Stein, Singular Integrals and Differentiability Properties of Functions, Princeton Univ. Press, Princeton, 1971. 
  23. [23] K. Stempak and J. Zienkiewicz, Twisted convolution and Riesz means, J. Anal. Math. 76 (1998), 93-107. Zbl0924.42011
  24. [24] S. Thangavelu, Lectures on Hermite and Laguerre Expansions, Princeton Univ. Press, Princeton, 1993. 
  25. [25] S. Thangavelu, Hermite and special Hermite expansions revisited, Duke Math. J. 94 (1998), 257-278. Zbl0945.42014
  26. [26] S. Thangavelu, Harmonic Analysis on the Heisenberg Group, Progr. Math. 159, Birkhäuser, Boston, 1998 Zbl0892.43001

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.