Symmetric cocycles and classical exponential sums
Colloquium Mathematicae (2000)
- Volume: 84/85, Issue: 1, page 125-145
- ISSN: 0010-1354
Access Full Article
topAbstract
topHow to cite
topForrest, Alan. "Symmetric cocycles and classical exponential sums." Colloquium Mathematicae 84/85.1 (2000): 125-145. <http://eudml.org/doc/210791>.
@article{Forrest2000,
abstract = {},
author = {Forrest, Alan},
journal = {Colloquium Mathematicae},
keywords = {exponential sums; cocycles with additional symmetries; density of lacunary exponential partial sums; Weyl sums},
language = {eng},
number = {1},
pages = {125-145},
title = {Symmetric cocycles and classical exponential sums},
url = {http://eudml.org/doc/210791},
volume = {84/85},
year = {2000},
}
TY - JOUR
AU - Forrest, Alan
TI - Symmetric cocycles and classical exponential sums
JO - Colloquium Mathematicae
PY - 2000
VL - 84/85
IS - 1
SP - 125
EP - 145
AB -
LA - eng
KW - exponential sums; cocycles with additional symmetries; density of lacunary exponential partial sums; Weyl sums
UR - http://eudml.org/doc/210791
ER -
References
top- [AP1] J. M. Anderson and L. D. Pitt, On recurrence properties of certain lacunary series I, J. Reine Angew. Math. 377 (1987), 65-82. Zbl0603.30004
- [AP2] J. M. Anderson and L. D. Pitt, On recurrence properties of certain lacunary series II, ibid., 83-96. Zbl0603.30004
- [At1] G. Atkinson, Non-compact extensions of transformations, Ph.D. Thesis, Univ. of Warwick, 1976.
- [At2] G. Atkinson, Recurrence of cocycles and random walks, J. London Math. Soc. (2) 13 (1976), 486-488.
- [At3] G. Atkinson, A class of transitive cylinder transformations, ibid. 17 (1978), 263-270.
- [Bi] P. Billingsley, Ergodic Theory and Information, Wiley Ser. Probab. Math. Statist., Wiley, New York, 1965.
- [Co] Z. Coelho, On the asymptotic range of cocycles for shifts of finite type, Ergodic Theory Dynam. Systems 13 (1993), 249-262.
- [D] F. M. Dekking, On transience and recurrence of generalised random walks, Z. Wahrsch. Verw. Gebiete 61 (1982), 459-465. Zbl0479.60070
- [GM-F] F. M. Dekking and M. Mendès-France, Uniform distribution modulo one: a geometrical viewpoint, J. Reine Angew. Math. 329 (1981), 143-153. Zbl0459.10025
- [FM] J. Feldman and C. Moore, Ergodic equivalence relations, cohomology and von Neumann algebras I, Trans. Amer. Math. Soc. 234 (1977), 289-324. Zbl0369.22009
- [Fo] A. H. Forrest, The limit points of Weyl sums and other continuous cocycles, J. London Math. Soc. (2) 54 (1996), 440-452.
- [F] H. Furstenberg, Recurrence in Ergodic Theory and Combinatorial Number Theory, Princeton Univ. Press, 1981.
- [G] Y. Guivarc'h, Propriétés ergodiques, en mesure infini, de certains systèmes dynamiques fibrés, Ergodic Theory Dynam. Systems 9 (1989), 433-453.
- [HL] G. H. Hardy and J. E. Littlewood, The trigonometric series associated with the elliptic -functions, Acta Math. 37 (1914), 193-239.
- [HW] G. H. Hardy and E. M. Wright, Introduction to the Theory of Numbers, Clarendon Press, Oxford, 1979.
- [He] G. A. Hedlund, A class of transformations of the plane, Proc. Cambridge Philos. Soc. 51 (1955), 554-564. Zbl0067.15301
- [I] A. Iwanik, Ergodicity for piecewise smooth cocycles over toral rotations, Fund. Math. 157 (1998), 235-244. Zbl0918.28015
- [Kh] A. Ya. Khintchine, Continued Fractions, Noordhoff, Groningen, 1963.
- [Kre] W. Krieger, On the finitary isomorphisms of Markov shifts that have finite expected coding time, Z. Wahrsch. Verw. Gebiete 65 (1983), 323-328. Zbl0516.60075
- [Kry] A. B. Krygin, An example of a cylindrical cascade with anomalous metric properties, Vestnik Moskov. Univ. Ser. I Mat. Mekh. 30 (1975), no. 5, 26-32 (in Russian). Zbl0324.28012
- [KN] L. Kuipers and H. Niederreiter, Uniform Distribution of Sequences, Wiley, New York, 1974. Zbl0281.10001
- [Liv] A. N. Livšic, Cohomology of dynamical systems, Math. USSR-Izv. 6 (1972), 1278-1301.
- [LM] M. Lemańczyk and M. K. Mentzen, Topological ergodicity of real cocycles over minimal rotations, preprint, April 1999.
- [LPV] M. Lemańczyk, F. Parreau and D. Volný, Ergodic properties of real cocycles and pseudo-homogeneous Banach spaces, Trans. Amer. Math. Soc. 348 (1996), 4919-4938. Zbl0876.28021
- [M] H. L. Montgomery, Ten Lectures on the Interface between Analytic Number Theory and Harmonic Analysis, CBMS Regional Conf. Ser. in Math. 84, Amer. Math. Soc., Providence, RI, 1994.
- [N] M. B. Nathanson, Additive Number Theory - The Classical Bases, Grad. Texts in Math. 164, Springer, New York, 1996.
- [PS] W. Parry and K. Schmidt, Coboundaries and homomorphisms for nonsingular actions and a problem of H. Helson, Invent. Math. 76 (1984), 15-32.
- [Pa] D. A. Pask, Skew products over the irrational rotation, Israel J. Math. 69 (1990), 65-74. Zbl0703.28009
- [Pu] L. D. Pustyl'nikov, New estimates of Weyl sums and the remainder term in the law of distribution of the fractional part of a polynomial, Ergodic Theory Dynam. Systems 11 (1991), 515-534.
- [Sch1] K. Schmidt, Cocycles of Ergodic Transformation Groups, Lecture Notes in Math. 1, MacMillan of India, 1977. Zbl0421.28017
- [Sch2] K. Schmidt, Hyperbolic structure preserving isomorphisms of Markov shifts, Israel J. Math. 55 (1986) 213-228. Zbl0615.28011
- [Schw] F. Schweiger, Ergodic Theory of Fibred Systems and Metric Number Theory, Clarendon Press, Oxford, 1995. Zbl0819.11027
- [Va] R. C. Vaughan, The Hardy-Littlewood Method, Cambridge Tract 80, Cambridge Univ. Press, 1981.
- [Vin] I. M. Vinogradov, The Method of Exponential Sums in the Theory of Numbers, Nauka, Moscow, 1971 (in Russian).
- [W] H. Weyl, Über die Gleichverteilung von Zahlen mod. Eins, Math. Ann. 77 (1916), 313-352. Zbl46.0278.06
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.