Symmetric cocycles and classical exponential sums

Alan Forrest

Colloquium Mathematicae (2000)

  • Volume: 84/85, Issue: 1, page 125-145
  • ISSN: 0010-1354

How to cite

top

Forrest, Alan. "Symmetric cocycles and classical exponential sums." Colloquium Mathematicae 84/85.1 (2000): 125-145. <http://eudml.org/doc/210791>.

@article{Forrest2000,
abstract = {},
author = {Forrest, Alan},
journal = {Colloquium Mathematicae},
keywords = {exponential sums; cocycles with additional symmetries; density of lacunary exponential partial sums; Weyl sums},
language = {eng},
number = {1},
pages = {125-145},
title = {Symmetric cocycles and classical exponential sums},
url = {http://eudml.org/doc/210791},
volume = {84/85},
year = {2000},
}

TY - JOUR
AU - Forrest, Alan
TI - Symmetric cocycles and classical exponential sums
JO - Colloquium Mathematicae
PY - 2000
VL - 84/85
IS - 1
SP - 125
EP - 145
AB -
LA - eng
KW - exponential sums; cocycles with additional symmetries; density of lacunary exponential partial sums; Weyl sums
UR - http://eudml.org/doc/210791
ER -

References

top
  1. [AP1] J. M. Anderson and L. D. Pitt, On recurrence properties of certain lacunary series I, J. Reine Angew. Math. 377 (1987), 65-82. Zbl0603.30004
  2. [AP2] J. M. Anderson and L. D. Pitt, On recurrence properties of certain lacunary series II, ibid., 83-96. Zbl0603.30004
  3. [At1] G. Atkinson, Non-compact extensions of transformations, Ph.D. Thesis, Univ. of Warwick, 1976. 
  4. [At2] G. Atkinson, Recurrence of cocycles and random walks, J. London Math. Soc. (2) 13 (1976), 486-488. 
  5. [At3] G. Atkinson, A class of transitive cylinder transformations, ibid. 17 (1978), 263-270. 
  6. [Bi] P. Billingsley, Ergodic Theory and Information, Wiley Ser. Probab. Math. Statist., Wiley, New York, 1965. 
  7. [Co] Z. Coelho, On the asymptotic range of cocycles for shifts of finite type, Ergodic Theory Dynam. Systems 13 (1993), 249-262. 
  8. [D] F. M. Dekking, On transience and recurrence of generalised random walks, Z. Wahrsch. Verw. Gebiete 61 (1982), 459-465. Zbl0479.60070
  9. [GM-F] F. M. Dekking and M. Mendès-France, Uniform distribution modulo one: a geometrical viewpoint, J. Reine Angew. Math. 329 (1981), 143-153. Zbl0459.10025
  10. [FM] J. Feldman and C. Moore, Ergodic equivalence relations, cohomology and von Neumann algebras I, Trans. Amer. Math. Soc. 234 (1977), 289-324. Zbl0369.22009
  11. [Fo] A. H. Forrest, The limit points of Weyl sums and other continuous cocycles, J. London Math. Soc. (2) 54 (1996), 440-452. 
  12. [F] H. Furstenberg, Recurrence in Ergodic Theory and Combinatorial Number Theory, Princeton Univ. Press, 1981. 
  13. [G] Y. Guivarc'h, Propriétés ergodiques, en mesure infini, de certains systèmes dynamiques fibrés, Ergodic Theory Dynam. Systems 9 (1989), 433-453. 
  14. [HL] G. H. Hardy and J. E. Littlewood, The trigonometric series associated with the elliptic θ -functions, Acta Math. 37 (1914), 193-239. 
  15. [HW] G. H. Hardy and E. M. Wright, Introduction to the Theory of Numbers, Clarendon Press, Oxford, 1979. 
  16. [He] G. A. Hedlund, A class of transformations of the plane, Proc. Cambridge Philos. Soc. 51 (1955), 554-564. Zbl0067.15301
  17. [I] A. Iwanik, Ergodicity for piecewise smooth cocycles over toral rotations, Fund. Math. 157 (1998), 235-244. Zbl0918.28015
  18. [Kh] A. Ya. Khintchine, Continued Fractions, Noordhoff, Groningen, 1963. 
  19. [Kre] W. Krieger, On the finitary isomorphisms of Markov shifts that have finite expected coding time, Z. Wahrsch. Verw. Gebiete 65 (1983), 323-328. Zbl0516.60075
  20. [Kry] A. B. Krygin, An example of a cylindrical cascade with anomalous metric properties, Vestnik Moskov. Univ. Ser. I Mat. Mekh. 30 (1975), no. 5, 26-32 (in Russian). Zbl0324.28012
  21. [KN] L. Kuipers and H. Niederreiter, Uniform Distribution of Sequences, Wiley, New York, 1974. Zbl0281.10001
  22. [Liv] A. N. Livšic, Cohomology of dynamical systems, Math. USSR-Izv. 6 (1972), 1278-1301. 
  23. [LM] M. Lemańczyk and M. K. Mentzen, Topological ergodicity of real cocycles over minimal rotations, preprint, April 1999. 
  24. [LPV] M. Lemańczyk, F. Parreau and D. Volný, Ergodic properties of real cocycles and pseudo-homogeneous Banach spaces, Trans. Amer. Math. Soc. 348 (1996), 4919-4938. Zbl0876.28021
  25. [M] H. L. Montgomery, Ten Lectures on the Interface between Analytic Number Theory and Harmonic Analysis, CBMS Regional Conf. Ser. in Math. 84, Amer. Math. Soc., Providence, RI, 1994. 
  26. [N] M. B. Nathanson, Additive Number Theory - The Classical Bases, Grad. Texts in Math. 164, Springer, New York, 1996. 
  27. [PS] W. Parry and K. Schmidt, Coboundaries and homomorphisms for nonsingular actions and a problem of H. Helson, Invent. Math. 76 (1984), 15-32. 
  28. [Pa] D. A. Pask, Skew products over the irrational rotation, Israel J. Math. 69 (1990), 65-74. Zbl0703.28009
  29. [Pu] L. D. Pustyl'nikov, New estimates of Weyl sums and the remainder term in the law of distribution of the fractional part of a polynomial, Ergodic Theory Dynam. Systems 11 (1991), 515-534. 
  30. [Sch1] K. Schmidt, Cocycles of Ergodic Transformation Groups, Lecture Notes in Math. 1, MacMillan of India, 1977. Zbl0421.28017
  31. [Sch2] K. Schmidt, Hyperbolic structure preserving isomorphisms of Markov shifts, Israel J. Math. 55 (1986) 213-228. Zbl0615.28011
  32. [Schw] F. Schweiger, Ergodic Theory of Fibred Systems and Metric Number Theory, Clarendon Press, Oxford, 1995. Zbl0819.11027
  33. [Va] R. C. Vaughan, The Hardy-Littlewood Method, Cambridge Tract 80, Cambridge Univ. Press, 1981. 
  34. [Vin] I. M. Vinogradov, The Method of Exponential Sums in the Theory of Numbers, Nauka, Moscow, 1971 (in Russian). 
  35. [W] H. Weyl, Über die Gleichverteilung von Zahlen mod. Eins, Math. Ann. 77 (1916), 313-352. Zbl46.0278.06

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.