Two remarks about Picard-Vessiot extensions and elementary functions
Colloquium Mathematicae (2000)
- Volume: 84/85, Issue: 1, page 173-183
- ISSN: 0010-1354
Access Full Article
topAbstract
topHow to cite
topŻołądek, Henryk. "Two remarks about Picard-Vessiot extensions and elementary functions." Colloquium Mathematicae 84/85.1 (2000): 173-183. <http://eudml.org/doc/210795>.
@article{Żołądek2000,
abstract = {We present a simple proof of the theorem which says that for a series of extensions of differential fields K ⊂ L ⊂ M, where K ⊂ M is Picard-Vessiot, the extension K ⊂ L is Picard-Vessiot iff the differential Galois group $Gal_\{L\} M$ is a normal subgroup of $Gal_\{K\} M$. We also present a proof that the probability function Erf(x) is not an elementary function.},
author = {Żołądek, Henryk},
journal = {Colloquium Mathematicae},
keywords = {differential Galois theory},
language = {eng},
number = {1},
pages = {173-183},
title = {Two remarks about Picard-Vessiot extensions and elementary functions},
url = {http://eudml.org/doc/210795},
volume = {84/85},
year = {2000},
}
TY - JOUR
AU - Żołądek, Henryk
TI - Two remarks about Picard-Vessiot extensions and elementary functions
JO - Colloquium Mathematicae
PY - 2000
VL - 84/85
IS - 1
SP - 173
EP - 183
AB - We present a simple proof of the theorem which says that for a series of extensions of differential fields K ⊂ L ⊂ M, where K ⊂ M is Picard-Vessiot, the extension K ⊂ L is Picard-Vessiot iff the differential Galois group $Gal_{L} M$ is a normal subgroup of $Gal_{K} M$. We also present a proof that the probability function Erf(x) is not an elementary function.
LA - eng
KW - differential Galois theory
UR - http://eudml.org/doc/210795
ER -
References
top- [Bor] A. Borel, Linear Algebraic Groups, Benjamin, New York, 1969.
- [Dav] J. H. Davenport, On the Integration of Algebraic Functions, Springer, Berlin, 1981.
- [Kap] I. Kaplansky, An Introduction to Differential Algebra, Hermann, Paris, 1957. Zbl0083.03301
- [Kol] E. Kolchin, Differential Algebra and Algebraic Groups, Academic Press, New York, 1973. Zbl0264.12102
- [Lio] J. Liouville, Premier mémoire sur la détermination des intégrales dont la valeur est algébrique, J. École Polytech. 14 (1833), 124-148; Second mémoire sur la détermination des intégrales dont la valeur est algébrique, ibid., 149-193.
- [Mag] A. G. Magid, Lectures on Differential Galois Theory, Amer. Math. Soc., Providence, 1994.
- [Rit] J. F. Ritt, Integration in Finite Terms. Liouville's Theory of Elementary Methods, Columbia Univ. Press, New York, 1948.
- [Sin] M. F. Singer, Algebraic relations among solutions of linear differential equations, Trans. Amer. Math. Soc. 295 (1986), 753-763. Zbl0593.12014
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.