A note on dynamical zeta functions for S-unimodal maps
Colloquium Mathematicae (2000)
- Volume: 84/85, Issue: 1, page 229-233
- ISSN: 0010-1354
Access Full Article
topAbstract
topHow to cite
topKeller, Gerhard. "A note on dynamical zeta functions for S-unimodal maps." Colloquium Mathematicae 84/85.1 (2000): 229-233. <http://eudml.org/doc/210800>.
@article{Keller2000,
abstract = {Let f be a nonrenormalizable S-unimodal map. We prove that f is a Collet-Eckmann map if its dynamical zeta function looks like that of a uniformly hyperbolic map.},
author = {Keller, Gerhard},
journal = {Colloquium Mathematicae},
keywords = {dynamical zeta function; Collet-Eckmann map},
language = {eng},
number = {1},
pages = {229-233},
title = {A note on dynamical zeta functions for S-unimodal maps},
url = {http://eudml.org/doc/210800},
volume = {84/85},
year = {2000},
}
TY - JOUR
AU - Keller, Gerhard
TI - A note on dynamical zeta functions for S-unimodal maps
JO - Colloquium Mathematicae
PY - 2000
VL - 84/85
IS - 1
SP - 229
EP - 233
AB - Let f be a nonrenormalizable S-unimodal map. We prove that f is a Collet-Eckmann map if its dynamical zeta function looks like that of a uniformly hyperbolic map.
LA - eng
KW - dynamical zeta function; Collet-Eckmann map
UR - http://eudml.org/doc/210800
ER -
References
top- [1] V. Baladi and G. Keller, Zeta-functions and transfer operators for piecewise monotone transformations, Comm. Math. Phys. 127 (1990), 459-478. Zbl0703.58048
- [2] V. Baladi, Periodic orbits and dynamical spectra, Ergodic Theory Dynam. Systems 18 (1998), 255-292. Zbl0915.58088
- [3] H. Bruin and G. Keller, Equilibrium states for S-unimodal maps, ibid. 18 (1998), 765-789. Zbl0916.58020
- [4] G. Keller and T. Nowicki, Fibonacci maps re(al)visited, ibid. 15 (1995), 99-120. Zbl0853.58072
- [5] W. de Melo and S. van Strien, One-Dimensional Dynamics, Springer, 1993. Zbl0791.58003
- [6] T. Nowicki and D. Sands, Non-uniform hyperbolicity and universal bounds for S-unimodal maps, Invent. Math. 132 (1998), 633-680. Zbl0908.58016
- [7] Y. Oono and Y. Takahashi, Chaos, external noise and Fredholm theory, Progr. Theor. Phys. 63 (1980), 1804-1807. Zbl1060.37501
- [8] R. Remmert, Theory of Complex Functions, Grad. Texts in Math. 122, Springer, New York, 1991.
- [9] D. Ruelle, Analytic completion for dynamical zeta functions, Helv. Phys. Acta 66 (1993), 181-191. Zbl0829.58033
- [10] Y. Takahashi, An ergodic-theoretical approach to the chaotic behaviour of dynamical systems, Publ. R.I.M.S. Kyoto Univ. 19 (1983), 1265-1282. Zbl0541.58030
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.