A note on dynamical zeta functions for S-unimodal maps

Gerhard Keller

Colloquium Mathematicae (2000)

  • Volume: 84/85, Issue: 1, page 229-233
  • ISSN: 0010-1354

Abstract

top
Let f be a nonrenormalizable S-unimodal map. We prove that f is a Collet-Eckmann map if its dynamical zeta function looks like that of a uniformly hyperbolic map.

How to cite

top

Keller, Gerhard. "A note on dynamical zeta functions for S-unimodal maps." Colloquium Mathematicae 84/85.1 (2000): 229-233. <http://eudml.org/doc/210800>.

@article{Keller2000,
abstract = {Let f be a nonrenormalizable S-unimodal map. We prove that f is a Collet-Eckmann map if its dynamical zeta function looks like that of a uniformly hyperbolic map.},
author = {Keller, Gerhard},
journal = {Colloquium Mathematicae},
keywords = {dynamical zeta function; Collet-Eckmann map},
language = {eng},
number = {1},
pages = {229-233},
title = {A note on dynamical zeta functions for S-unimodal maps},
url = {http://eudml.org/doc/210800},
volume = {84/85},
year = {2000},
}

TY - JOUR
AU - Keller, Gerhard
TI - A note on dynamical zeta functions for S-unimodal maps
JO - Colloquium Mathematicae
PY - 2000
VL - 84/85
IS - 1
SP - 229
EP - 233
AB - Let f be a nonrenormalizable S-unimodal map. We prove that f is a Collet-Eckmann map if its dynamical zeta function looks like that of a uniformly hyperbolic map.
LA - eng
KW - dynamical zeta function; Collet-Eckmann map
UR - http://eudml.org/doc/210800
ER -

References

top
  1. [1] V. Baladi and G. Keller, Zeta-functions and transfer operators for piecewise monotone transformations, Comm. Math. Phys. 127 (1990), 459-478. Zbl0703.58048
  2. [2] V. Baladi, Periodic orbits and dynamical spectra, Ergodic Theory Dynam. Systems 18 (1998), 255-292. Zbl0915.58088
  3. [3] H. Bruin and G. Keller, Equilibrium states for S-unimodal maps, ibid. 18 (1998), 765-789. Zbl0916.58020
  4. [4] G. Keller and T. Nowicki, Fibonacci maps re(al)visited, ibid. 15 (1995), 99-120. Zbl0853.58072
  5. [5] W. de Melo and S. van Strien, One-Dimensional Dynamics, Springer, 1993. Zbl0791.58003
  6. [6] T. Nowicki and D. Sands, Non-uniform hyperbolicity and universal bounds for S-unimodal maps, Invent. Math. 132 (1998), 633-680. Zbl0908.58016
  7. [7] Y. Oono and Y. Takahashi, Chaos, external noise and Fredholm theory, Progr. Theor. Phys. 63 (1980), 1804-1807. Zbl1060.37501
  8. [8] R. Remmert, Theory of Complex Functions, Grad. Texts in Math. 122, Springer, New York, 1991. 
  9. [9] D. Ruelle, Analytic completion for dynamical zeta functions, Helv. Phys. Acta 66 (1993), 181-191. Zbl0829.58033
  10. [10] Y. Takahashi, An ergodic-theoretical approach to the chaotic behaviour of dynamical systems, Publ. R.I.M.S. Kyoto Univ. 19 (1983), 1265-1282. Zbl0541.58030

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.