Dynamical systems arising from elliptic curves
P. D'Ambros; G. Everest; R. Miles; T. Ward
Colloquium Mathematicae (2000)
- Volume: 84/85, Issue: 1, page 95-107
- ISSN: 0010-1354
Access Full Article
topAbstract
topHow to cite
topReferences
top- [1] R. Adler, A. Konheim and M. McAndrew, Topological entropy, Trans. Amer. Math. Soc. 114 (1965), 309-319. Zbl0127.13102
- [2] R. Bowen, Entropy for group endomorphisms and homogeneous spaces, ibid. 153 (1971), 401-414. Zbl0212.29201
- [3] V. Chothi, G. Everest and T. Ward, S-integer dynamical systems: periodic points, J. Reine Angew. Math. 489 (1997), 99-132. Zbl0879.58037
- [4] S. David, Minorations des formes linéaires de logarithmes elliptiques, Mem. Soc. Math. France 62 (1995).
- [5] G. Everest and T. Ward, A dynamical interpretation of the global canonical height on an elliptic curve, Experiment. Math. 7 (1998), 305-316. Zbl0927.11009
- [6] G. Everest and T. Ward, Heights of Polynomials and Entropy in Algebraic Dynamics, Springer, London, 1999. Zbl0919.11064
- [7] L. Flatto, J. C. Lagarias and B. Poonen, The zeta function of the beta transformation, Ergodic Theory Dynam. Systems 14 (1994), 237-266. Zbl0843.58106
- [8] E. Hewitt and K. Ross, Abstract Harmonic Analysis, Springer, New York, 1963. Zbl0115.10603
- [9] F. Hofbauer, β-shifts have unique maximal measures, Monatsh. Math. 85 (1978), 189-198.
- [10] D. A. Lind and T. Ward, Automorphisms of solenoids and p-adic entropy, Ergodic Theory Dynam. Systems 8 (1988), 411-419. Zbl0634.22005
- [11] W. Parry, On the β-expansions of real numbers, Acta Math. Acad. Sci. Hungar. 11 (1960), 401-416. Zbl0099.28103
- [12] W. Parry, Representations for real numbers, ibid. 15 (1964), 95-105. Zbl0136.35104
- [13] A. Rényi, Representations for real numbers and their ergodic properties, ibid. 8 (1957), 477-493. Zbl0079.08901
- [14] J. F. Ritt, Permutable rational functions, Trans. Amer. Math. Soc. 25 (1923), 399-448. Zbl49.0712.02
- [15] K. Schmidt, Dynamical Systems of Algebraic Origin, Birkhäuser, Basel, 1995. Zbl0833.28001
- [16] J. H. Silverman, The Arithmetic of Elliptic Curves, Springer, New York, 1986. Zbl0585.14026
- [17] J. H. Silverman, Computing heights on elliptic curves, Math. Comp. 51 (1988), 339-358. Zbl0656.14016
- [18] J. H. Silverman, Advanced Topics in the Arithmetic of Elliptic Curves, Springer, New York, 1994. Zbl0911.14015
- [19] A. P. Veselov, What is an integrable mapping?, in: What is Integrability?, V. E. Zakharov (ed.), Springer, New York, 1991, 251-272. Zbl0733.58025
- [20] A. P. Veselov, Growth and integrability in the dynamics of mappings, Comm. Math. Phys. 145 (1992), 181-193. Zbl0751.58034
- [21] P. Walters, An Introduction to Ergodic Theory, Springer, New York, 1982. Zbl0475.28009
- [22] M. Ward, The law of repetition of primes in an elliptic divisibility sequence, Duke Math. J. 15 (1948), 941-946. Zbl0032.01403
- [23] M. Ward, Memoir on elliptic divisibility sequences, Amer. J. Math. 70 (1948), 31-74. Zbl0035.03702
- [24] T. Ward, The entropy of automorphisms of solenoidal groups, Master's thesis, Univ. of Warwick, 1986.
- [25] A. Weil, Basic Number Theory, third ed., Springer, New York, 1974.