A note on a generalized cohomology equation
Colloquium Mathematicae (2000)
- Volume: 84/85, Issue: 2, page 279-283
- ISSN: 0010-1354
Access Full Article
topAbstract
topHow to cite
topKrzyżewski, K.. "A note on a generalized cohomology equation." Colloquium Mathematicae 84/85.2 (2000): 279-283. <http://eudml.org/doc/210813>.
@article{Krzyżewski2000,
abstract = {We give a necessary and sufficient condition for the solvability of a generalized cohomology equation, for an ergodic endomorphism of a probability measure space, in the space of measurable complex functions. This generalizes a result obtained in [7].},
author = {Krzyżewski, K.},
journal = {Colloquium Mathematicae},
keywords = {cohomology equation; coboundary; ergodic endomorphism},
language = {eng},
number = {2},
pages = {279-283},
title = {A note on a generalized cohomology equation},
url = {http://eudml.org/doc/210813},
volume = {84/85},
year = {2000},
}
TY - JOUR
AU - Krzyżewski, K.
TI - A note on a generalized cohomology equation
JO - Colloquium Mathematicae
PY - 2000
VL - 84/85
IS - 2
SP - 279
EP - 283
AB - We give a necessary and sufficient condition for the solvability of a generalized cohomology equation, for an ergodic endomorphism of a probability measure space, in the space of measurable complex functions. This generalizes a result obtained in [7].
LA - eng
KW - cohomology equation; coboundary; ergodic endomorphism
UR - http://eudml.org/doc/210813
ER -
References
top- [1] S. Banach et S. Saks, Sur la convergence forte dans les champs , Studia Math. 2 (1930), 51-57. Zbl56.0932.01
- [2] N. Dunford and J. T. Schwartz, Linear Operators, Part I: General Theory, Interscience, New York, 1958. Zbl0084.10402
- [3] K. Krzyżewski, On regularity of measurable solutions of a cohomology equation, Bull. Polish Acad. Sci. Math. 37 (1989), 279-287. Zbl0762.58022
- [4] K. Krzyżewski, On 4-lacunary sequences generated by ergodic toral endomorphisms, Proc. Amer. Math. Soc. 118 (1993), 469-478. Zbl0783.42016
- [5] K. Krzyżewski, On 4-lacunary sequences generated by some measure preserving maps, Acta Math. Hungar. 74 (1997), 261-278. Zbl0924.28011
- [6] K. Krzyżewski, On some Sidon sequences, Internat. J. Bifurcation Chaos 9 (1999), 1785-1793. Zbl1089.28500
- [7] J. Kwiatkowski, M. Lemańczyk and D. Rudolph, Weak isomorphism of meas- ure-preserving diffeomorphisms, Israel J. Math. 80 (1992), 33-64. Zbl0774.28008
- [8] F. Riesz and B. Sz.-Nagy, Leçons d'Analyse Fonctionnelle, Akadémiai Kiadó, Budapest, 1952.
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.