Construction of non-constant and ergodic cocycles
Colloquium Mathematicae (2000)
- Volume: 84/85, Issue: 2, page 395-419
- ISSN: 0010-1354
Access Full Article
topAbstract
topHow to cite
topReferences
top- [AK] D. Anosov and A. Katok, New examples in smooth ergodic theory, Trans. Moscow Math. Soc. 23 (1970), 1-35. Zbl0255.58007
- [GM] S. Glasner and D. Maon, Rigidity in topological dynamics, Ergodic Theory Dynam. Systems 9 (1989), 309-320. Zbl0661.58027
- [GW] S. Glasner and B. Weiss, On the construction of minimal skew products, Israel J. Math. 34 (1979), 321-336. Zbl0434.54032
- [H] P. Halmos, Lectures on Ergodic Theory, Math. Soc. Japan, Tokyo, 1956.
- [HSY] B. Hunt, T. Sauer and J. Yorke, Prevalence: A translation-invariant 'almost every' on infinite-dimensional spaces, Bull. Amer. Math. Soc. 27 (1992), 217-238. Zbl0763.28009
- [IS] A. Iwanik and J. Serafin, Most monothetic extensions are rank-1, Colloq. Math. 66 (1993), 63-76. Zbl0833.28009
- [JP] R. Jones and W. Parry, Compact abelian group extensions of dynamical systems II, Compositio Math. 25 (1972), 135-147. Zbl0243.54039
- [K] A. Katok, Constructions in Ergodic Theory, Part II, unpublished notes. Zbl1030.37001
- [M] I. Melbourne, Symmetric ω-limit sets for smooth Γ-equivariant dynamical systems with abelian, Nonlinearity 10 (1997), 1551-1567. Zbl0908.58044
- [N1] M. Nerurkar, Ergodic continuous skew product actions of amenable groups, Pacific J. Math. 119 (1985), 343-363. Zbl0563.28013
- [N2] M. Nerurkar, On the construction of smooth ergodic skew-products, Ergodic Theory Dynam. Systems 8 (1988), 311-326. Zbl0662.58028
- [Sch] K. Schmidt, Cocycles and Ergodic Transformation Groups, MacMillan of India, 1977. Zbl0421.28017
- [Z] R. Zimmer, Extensions of ergodic group actions, Illinois J. Math. 20 (1976), 373-409. Zbl0334.28015