On the K-theory of tubular algebras
Colloquium Mathematicae (2000)
- Volume: 86, Issue: 1, page 137-152
- ISSN: 0010-1354
Access Full Article
topAbstract
topHow to cite
topReferences
top- [1] M. Barot, Representation-finite derived tubular algebras, Arch. Math. (Basel) 74 (2000), 83-94. Zbl0962.16010
- [2] M. Barot and J. A. de la Pe na, Derived tubular strongly simply connected algebras, Proc. Amer. Math. Soc. 127 (1999), 647-655. Zbl0940.16008
- [3] D. Happel, Triangulated Categories in the Representation Theory of Finite Dimensional Algebras, London Math. Soc. Lecture Note Ser. 119, Cambridge Univ. Press, 1988. Zbl0635.16017
- [4] N. Koblitz, Introduction to Elliptic Curves and Modular Forms, Grad. Texts in Math., 97, Springer, Berlin, 1984. Zbl0553.10019
- [5] D. Kussin, Non-isomorphic derived-equivalent tubular curves and their associated tubular algebras, J. Algebra 226 (2000), 436-450. Zbl0948.14003
- [6] D. Kussin, Graduierte Faktorialität und die Parameterkurven tubularer Familien, Ph.D. thesis, Universität Paderborn, 1997.
- [7] H. Lenzing, A K-theoretic study of canonical algebras, in: Representation Theory of Algebras (Cocoyoc, 1994), R. Bautista, R. Mart-Villa, and J. A. de la Pe na (eds.), CMS Conf. Proc. 18, Amer. Math. Soc., Providence, RI, 1996, 433-473.
- [8] H. Lenzing, Representations of finite dimensional algebras and singularity theory, in: Trends in Ring Theory (Miskolc, 1996) V. Dlab et al. (eds.), CMS Conf. Proc. 22, Amer. Math. Soc., Providence, RI, 1998, 71-97. Zbl0895.16003
- [9] H. Lenzing and H. Meltzer, The automorphism group of the derived category for a weighted projective line, Comm. Algebra 28 (2000), 1685-1700. Zbl0965.16008
- [10] H. Lenzing and H. Meltzer, Sheaves on a weighted projective line of genus one, and representations of a tubular algebra, in: Representations of Algebras (Ottawa 1992), V. Dlab and H. Lenzing (eds.), CMS Conf. Proc. 14, Amer. Math. Soc., Providence, RI, 1993, 313-337. Zbl0809.16012
- [11] H. Lenzing and J. A. de la Pe na, Concealed-canonical algebras and separating tubular families, Proc. London Math. Soc. 78 (1999), 513-540. Zbl1035.16009
- [12] C. M. Ringel, Tame Algebras and Integral Quadratic Forms, Lecture Notes in Math. 1099, Springer, Berlin, 1984.
- [13] C. M. Ringel, The canonical algebras, in: Topics in Algebra, Banach Center Publ. 26, 1990, with an appendix by William Crawley-Boevey, 407-432.