Volume mean values of subtemperatures
Colloquium Mathematicae (2000)
- Volume: 86, Issue: 2, page 253-258
- ISSN: 0010-1354
Access Full Article
topAbstract
topHow to cite
topWatson, Neil. "Volume mean values of subtemperatures." Colloquium Mathematicae 86.2 (2000): 253-258. <http://eudml.org/doc/210854>.
@article{Watson2000,
abstract = {Several authors have found the characteristic mean value formula for temperatures over heat spheres. Those who derived a corresponding formula over heat balls have all chosen different mean values. In this paper we discuss an infinity of possible means over heat balls, and show that, in the wider context of subtemperatures, some are more desirable than others.},
author = {Watson, Neil},
journal = {Colloquium Mathematicae},
keywords = {volume mean value property of harmonic functions; weighted mean value formulae; heat balls; mean values of subtemperatures; heat equation analogues of subharmonic functions},
language = {eng},
number = {2},
pages = {253-258},
title = {Volume mean values of subtemperatures},
url = {http://eudml.org/doc/210854},
volume = {86},
year = {2000},
}
TY - JOUR
AU - Watson, Neil
TI - Volume mean values of subtemperatures
JO - Colloquium Mathematicae
PY - 2000
VL - 86
IS - 2
SP - 253
EP - 258
AB - Several authors have found the characteristic mean value formula for temperatures over heat spheres. Those who derived a corresponding formula over heat balls have all chosen different mean values. In this paper we discuss an infinity of possible means over heat balls, and show that, in the wider context of subtemperatures, some are more desirable than others.
LA - eng
KW - volume mean value property of harmonic functions; weighted mean value formulae; heat balls; mean values of subtemperatures; heat equation analogues of subharmonic functions
UR - http://eudml.org/doc/210854
ER -
References
top- [1] A. F. Beardon, Integral means of subharmonic functions, Proc. Cambridge Philos. Soc. 69 (1971), 151-152. Zbl0207.11004
- [2] W. Fulks, A mean value theorem for the heat equation, Proc. Amer. Math. Soc. 17 (1966), 6-11.
- [3] L. L. Helms, Introduction to Potential Theory, Wiley, New York, 1969. Zbl0188.17203
- [4] L. P. Kuptsov, Mean property for the heat-conduction equation, Mat. Zametki 29 (1981), 211-223 (in Russian); English transl.: Math. Notes 29 (1981), 110-116. Zbl0465.35042
- [5] B. Pini, Maggioranti e minoranti delle soluzioni delle equazioni paraboliche, Ann. Mat. Pura Appl. 37 (1954), 249-264.
- [6] T. Radó, Subharmonic Functions, Springer, Berlin, 1937. Zbl63.0458.05
- [7] E. P. Smyrnélis, Sur les moyennes des fonctions paraboliques, Bull. Sci. Math. (2) 93 (1969), 163-173. Zbl0203.09701
- [8] N. A. Watson, A theory of subtemperatures in several variables, Proc. London Math. Soc. (3) 26 (1973), 385-417. Zbl0253.35045
- [9] N. A. Watson, Green functions, potentials, and the Dirichlet problem for the heat equation, ibid. 33 (1976), 251-298. Zbl0336.35046
- [10] N. A. Watson, A convexity theorem for local mean values of subtemperatures, Bull. London Math. Soc. 22 (1990), 245-252. Zbl0722.35019
- [11] N. A. Watson, Nevanlinna's first fundamental theorem for subtemperatures, Math. Scand. 73 (1993), 49-64. Zbl0794.31006
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.