Volume mean values of subtemperatures
Colloquium Mathematicae (2000)
- Volume: 86, Issue: 2, page 253-258
- ISSN: 0010-1354
Access Full Article
topAbstract
topHow to cite
topReferences
top- [1] A. F. Beardon, Integral means of subharmonic functions, Proc. Cambridge Philos. Soc. 69 (1971), 151-152. Zbl0207.11004
- [2] W. Fulks, A mean value theorem for the heat equation, Proc. Amer. Math. Soc. 17 (1966), 6-11.
- [3] L. L. Helms, Introduction to Potential Theory, Wiley, New York, 1969. Zbl0188.17203
- [4] L. P. Kuptsov, Mean property for the heat-conduction equation, Mat. Zametki 29 (1981), 211-223 (in Russian); English transl.: Math. Notes 29 (1981), 110-116. Zbl0465.35042
- [5] B. Pini, Maggioranti e minoranti delle soluzioni delle equazioni paraboliche, Ann. Mat. Pura Appl. 37 (1954), 249-264.
- [6] T. Radó, Subharmonic Functions, Springer, Berlin, 1937. Zbl63.0458.05
- [7] E. P. Smyrnélis, Sur les moyennes des fonctions paraboliques, Bull. Sci. Math. (2) 93 (1969), 163-173. Zbl0203.09701
- [8] N. A. Watson, A theory of subtemperatures in several variables, Proc. London Math. Soc. (3) 26 (1973), 385-417. Zbl0253.35045
- [9] N. A. Watson, Green functions, potentials, and the Dirichlet problem for the heat equation, ibid. 33 (1976), 251-298. Zbl0336.35046
- [10] N. A. Watson, A convexity theorem for local mean values of subtemperatures, Bull. London Math. Soc. 22 (1990), 245-252. Zbl0722.35019
- [11] N. A. Watson, Nevanlinna's first fundamental theorem for subtemperatures, Math. Scand. 73 (1993), 49-64. Zbl0794.31006