On D-dimension of metrizable spaces

Wojciech Olszewski

Fundamenta Mathematicae (1991)

  • Volume: 140, Issue: 1, page 35-48
  • ISSN: 0016-2736

Abstract

top
For every cardinal τ and every ordinal α, we construct a metrizable space M α ( τ ) and a strongly countable-dimensional compact space Z α ( τ ) of weight τ such that D ( M α ( τ ) ) α , D ( Z α ( τ ) ) α and each metrizable space X of weight τ such that D(X) ≤ α is homeomorphic to a subspace of M α ( τ ) and to a subspace of Z α + 1 ( τ ) .

How to cite

top

Olszewski, Wojciech. "On D-dimension of metrizable spaces." Fundamenta Mathematicae 140.1 (1991): 35-48. <http://eudml.org/doc/211927>.

@article{Olszewski1991,
abstract = {For every cardinal τ and every ordinal α, we construct a metrizable space $M_α(τ)$ and a strongly countable-dimensional compact space $Z_α(τ)$ of weight τ such that $D(M_α(τ)) ≤ α$, $D(Z_α(τ)) ≤ α$ and each metrizable space X of weight τ such that D(X) ≤ α is homeomorphic to a subspace of $M_α(τ)$ and to a subspace of $Z_\{α+1\}(τ)$.},
author = {Olszewski, Wojciech},
journal = {Fundamenta Mathematicae},
keywords = {countable-dimensional compact space},
language = {eng},
number = {1},
pages = {35-48},
title = {On D-dimension of metrizable spaces},
url = {http://eudml.org/doc/211927},
volume = {140},
year = {1991},
}

TY - JOUR
AU - Olszewski, Wojciech
TI - On D-dimension of metrizable spaces
JO - Fundamenta Mathematicae
PY - 1991
VL - 140
IS - 1
SP - 35
EP - 48
AB - For every cardinal τ and every ordinal α, we construct a metrizable space $M_α(τ)$ and a strongly countable-dimensional compact space $Z_α(τ)$ of weight τ such that $D(M_α(τ)) ≤ α$, $D(Z_α(τ)) ≤ α$ and each metrizable space X of weight τ such that D(X) ≤ α is homeomorphic to a subspace of $M_α(τ)$ and to a subspace of $Z_{α+1}(τ)$.
LA - eng
KW - countable-dimensional compact space
UR - http://eudml.org/doc/211927
ER -

References

top
  1. [1]R. Engelking, General Topology, Heldermann, Berlin 1989. 
  2. [2]R. Engelking, Dimension Theory, PWN, Warszawa 1978. 
  3. [3] F. Hausdorff, Set Theory, Chelsea, New York 1962. 
  4. [4] D. W. Henderson, D-dimension, I. A new transfinite dimension, Pacific J. Math. 26 (1968), 91-107. Zbl0162.26904
  5. [5] D. W. Henderson, D-dimension, II. Separable spaces and compactifications, ibid., 109-113. Zbl0162.27001
  6. [6] I. M. Kozlovskiĭ, Two theorems on metric spaces, Dokl. Akad. Nauk SSSR 204 (1972), 784-787 (in Russian); English transl.: Soviet Math. Dokl. 13 (1972), 743-747. Zbl0268.54030
  7. [7] L. Luxemburg, On compactifications of metric spaces with transfinite dimension, Pacific J. Math. 101 (1982), 399-450. Zbl0451.54030
  8. [8] L. Luxemburg, On universal infinite-dimensional spaces, Fund. Math. 122 (1984), 129-147. Zbl0571.54029
  9. [9] W. Olszewski, Universal spaces for locally finite-dimensional and strongly countable-dimensional metrizable spaces, ibid. 135 (1990), 97-109. Zbl0743.54019
  10. [10] L. Polkowski, On transfinite dimension, Colloq. Math. 50 (1985), 61-79. Zbl0613.54024
  11. [11] W. Sierpiński, Cardinal and Ordinal Numbers, PWN, Warszawa 1965. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.