A concavity property for the measure of product sets in groups

Imre Ruzsa

Fundamenta Mathematicae (1992)

  • Volume: 140, Issue: 3, page 247-254
  • ISSN: 0016-2736

Abstract

top
Let G be a connected locally compact group with a left invariant Haar measure μ. We prove that the function ξ(x) = inf μ̅(AB): μ(A) = x is concave for any fixed bounded set B ⊂ G. This is used to give a new proof of Kemperman’s inequality μ ̲ ( A B ) m i n ( μ ̲ ( A ) + μ ̲ ( B ) , μ ( G ) ) for unimodular G.

How to cite

top

Ruzsa, Imre. "A concavity property for the measure of product sets in groups." Fundamenta Mathematicae 140.3 (1992): 247-254. <http://eudml.org/doc/211944>.

@article{Ruzsa1992,
abstract = {Let G be a connected locally compact group with a left invariant Haar measure μ. We prove that the function ξ(x) = inf μ̅(AB): μ(A) = x is concave for any fixed bounded set B ⊂ G. This is used to give a new proof of Kemperman’s inequality $μ̲(AB) ≥ min (μ̲(A) + μ̲(B), μ(G))$ for unimodular G.},
author = {Ruzsa, Imre},
journal = {Fundamenta Mathematicae},
keywords = {locally compact group; left Haar measure; inner and outer measures; impact function; continuous and concave},
language = {eng},
number = {3},
pages = {247-254},
title = {A concavity property for the measure of product sets in groups},
url = {http://eudml.org/doc/211944},
volume = {140},
year = {1992},
}

TY - JOUR
AU - Ruzsa, Imre
TI - A concavity property for the measure of product sets in groups
JO - Fundamenta Mathematicae
PY - 1992
VL - 140
IS - 3
SP - 247
EP - 254
AB - Let G be a connected locally compact group with a left invariant Haar measure μ. We prove that the function ξ(x) = inf μ̅(AB): μ(A) = x is concave for any fixed bounded set B ⊂ G. This is used to give a new proof of Kemperman’s inequality $μ̲(AB) ≥ min (μ̲(A) + μ̲(B), μ(G))$ for unimodular G.
LA - eng
KW - locally compact group; left Haar measure; inner and outer measures; impact function; continuous and concave
UR - http://eudml.org/doc/211944
ER -

References

top
  1. Hewitt and K. A. Ross, Abstract Harmonic Analysis, Springer, New York 1963. Zbl0115.10603
  2. Kemperman, On products of sets in a locally compact group, Fund. Math. 56 (1964), 51-68. Zbl0125.28901
  3. Kneser, Summenmengen in lokalkompakten abelschen Gruppen, Math. Z. 66 (1956), 88-110. 
  4. Macbeath, On measure of sum sets II. The sum-theorem for the torus, Proc. Cambridge Philos. Soc. 49 (1953), 40-43. Zbl0052.26301
  5. Plünnecke, Eigenschaften und Abschätzungen von Wirkungsfunktionen, Ges. Mathematik und Datenverarbeitung, Bonn 1969. 
  6. Raikov, On the addition of point sets in the sense of Schnirelmann, Mat. Sb. 5 (47) (1939), 425-440 (in Russian). Zbl0022.21003
  7. Shields, Sur la mesure d'une somme vectorielle, Fund. Math. 42 (1955), 57-60. Zbl0065.01702

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.