Arithmetical transfinite induction and hierarchies of functions
Fundamenta Mathematicae (1992)
- Volume: 141, Issue: 1, page 1-20
- ISSN: 0016-2736
Access Full Article
topAbstract
topHow to cite
topRatajczyk, Z.. "Arithmetical transfinite induction and hierarchies of functions." Fundamenta Mathematicae 141.1 (1992): 1-20. <http://eudml.org/doc/211948>.
@article{Ratajczyk1992,
author = {Ratajczyk, Z.},
journal = {Fundamenta Mathematicae},
keywords = {arithmetical transfinite induction; Wainer Theorem; Paris-Harrington Theorem; Solovay-Ketonen Theorem},
language = {eng},
number = {1},
pages = {1-20},
title = {Arithmetical transfinite induction and hierarchies of functions},
url = {http://eudml.org/doc/211948},
volume = {141},
year = {1992},
}
TY - JOUR
AU - Ratajczyk, Z.
TI - Arithmetical transfinite induction and hierarchies of functions
JO - Fundamenta Mathematicae
PY - 1992
VL - 141
IS - 1
SP - 1
EP - 20
LA - eng
KW - arithmetical transfinite induction; Wainer Theorem; Paris-Harrington Theorem; Solovay-Ketonen Theorem
UR - http://eudml.org/doc/211948
ER -
References
top- [1] G. Gentzen, Beweisbarkeit und Unbeweisbarkeit von Anfangsfählen der transfiniten Induktion in der reinen Zahlentheorie, Math. Ann. 119 (1943), 140-161. Zbl0028.10201
- [2] P. Hájek and J. Paris, Combinatorial principles concerning approximations of functions, Arch. Math. Logik Grundlag. 26 (1987), 13-28. Zbl0645.03057
- [3] J. Ketonen and R. Solovay, Rapidly growing Ramsey functions, Ann. of Math. 113 (1981), 267-314. Zbl0494.03027
- [4] H. Kotlarski and Z. Ratajczyk, Inductive full satisfaction classes, Ann. Pure Appl. Logic 47 (1990), 199-223. Zbl0708.03014
- [5] K. McAloon, Paris-Harrington incompleteness and progressions of theories, in: Proc. Sympos. Pure Math. 42, Amer. Math. Soc., 1985, 447-460. Zbl0589.03028
- [6] J. Paris and L. Harrington, A mathematical incompleteness in Peano arithmetic, in: Handbook of Mathematical Logic, North-Holland, 1977, 1133-1142.
- [7] Z. Ratajczyk, A combinatorial analysis of functions provably recursive in , Fund. Math. 130 (1988), 191-213.
- [8] Z. Ratajczyk, Subsystems of the true arithmetic and hierarchies of functions, Ann. Pure Appl. Logic, to appear.
- [9] U. Schmerl, A fine structure generated by reflection formulas over primitive recursive arithmetic, in: Logic Colloquium 78, M. Boffa, K. McAloon and D. van Dalen (eds.), North-Holland, Amsterdam 1979, 335-350.
- [10] D. Schmidt, Built-up systems of fundamental sequences and hierarchies of number-theoretic functions, Arch. Math. Logik Grundlag. 18 (1976), 47-53. Zbl0358.02061
- [11] S. Wainer, Ordinal recursion, and a refinement of the extended Grzegorczyk hierarchy, J. Symbolic Logic 37 (1972), 281-292. Zbl0261.02031
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.