Open subspaces of countable dense homogeneous spaces

Stephen Watson; Petr Simon

Fundamenta Mathematicae (1992)

  • Volume: 141, Issue: 2, page 101-108
  • ISSN: 0016-2736

Abstract

top
We construct a completely regular space which is connected, locally connected and countable dense homogeneous but not strongly locally homogeneous. The space has an open subset which has a unique cut-point. We use the construction of a C 1 -diffeomorphism of the plane which takes one countable dense set to another.

How to cite

top

Watson, Stephen, and Simon, Petr. "Open subspaces of countable dense homogeneous spaces." Fundamenta Mathematicae 141.2 (1992): 101-108. <http://eudml.org/doc/211955>.

@article{Watson1992,
abstract = {We construct a completely regular space which is connected, locally connected and countable dense homogeneous but not strongly locally homogeneous. The space has an open subset which has a unique cut-point. We use the construction of a $C^1$-diffeomorphism of the plane which takes one countable dense set to another.},
author = {Watson, Stephen, Simon, Petr},
journal = {Fundamenta Mathematicae},
language = {eng},
number = {2},
pages = {101-108},
title = {Open subspaces of countable dense homogeneous spaces},
url = {http://eudml.org/doc/211955},
volume = {141},
year = {1992},
}

TY - JOUR
AU - Watson, Stephen
AU - Simon, Petr
TI - Open subspaces of countable dense homogeneous spaces
JO - Fundamenta Mathematicae
PY - 1992
VL - 141
IS - 2
SP - 101
EP - 108
AB - We construct a completely regular space which is connected, locally connected and countable dense homogeneous but not strongly locally homogeneous. The space has an open subset which has a unique cut-point. We use the construction of a $C^1$-diffeomorphism of the plane which takes one countable dense set to another.
LA - eng
UR - http://eudml.org/doc/211955
ER -

References

top
  1. [1] L. V. Ahlfors, Complex Analysis, McGraw-Hill, New York 1953. Zbl0052.07002
  2. [2] R. D. Anderson, D. W. Curtis and J. van Mill, A fake topological Hilbert space, Trans. Amer. Math. Soc. 272 (1982), 311-321. 
  3. [3] J. W. Bales, Representable and strongly locally homogeneous spaces and strongly n-homogeneous spaces, Houston J. Math. 2 (1976), 315-327. Zbl0341.54047
  4. [4] K. F. Barth and W. J. Schneider, Entire functions mapping arbitrary countable dense sets and their complements onto each other, J. London Math. Soc. 4 (1971/72), 482-488. Zbl0228.30020
  5. [5] K. F. Barth and W. J. Schneider, Entire functions mapping countable dense subsets of the reals onto each other monotonically, ibid. 2 (1970), 620-626. Zbl0201.09203
  6. [6] R. Bennett, Countable dense homogeneous spaces, Fund. Math. 74 (1972), 189-194. Zbl0227.54020
  7. [7] R. B. Burckel and S. Saeki, Additive mappings on rings of holomorphic functions, Proc. Amer. Math. Soc. 89 (1983), 79-85. Zbl0532.30040
  8. [8] G. Cantor, Beiträge zur Begründung der transfiniten Mengenlehre, Math. Ann. 46 (1895), 481-512. Zbl26.0081.01
  9. [9] J. de Groot, Topological Hilbert space and the drop-out effect, Technical Report zw-1969, Math. Centrum, Amsterdam 1969. Zbl0199.25702
  10. [10] T. Dobrowolski, On smooth countable dense homogeneity, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 24 (1976), 627-634. Zbl0332.58005
  11. [11] C. Eberhart, Some remarks on the irrational and rational numbers, Amer. Math. Monthly 84 (1977), 32-35. Zbl0358.54019
  12. [12] P. Erdős, Problem 2.31, in: Research Problems in Function Theory, W. K. Haymann (ed.), Athlone Press, London 1967. 
  13. [13] P. Erdős, Some unsolved problems, Michigan Math. J. 4 (1957), 291-300. 
  14. [14] B. Fitzpatrick, Jr., A note on countable dense homogeneity, Fund. Math. 75 (1972), 33-34. 
  15. [15] B. Fitzpatrick, Jr., and H.-X. Zhou, Densely homogeneous spaces (II), Houston J. Math. 14 (1988), 57-68. Zbl0677.54014
  16. [16] B. Fitzpatrick, Some open problems in densely homogeneous spaces, in: Open Problems in Topology, J. van Mill and G. M. Reed (eds.), North-Holland, Amsterdam 1990, 251-259. 
  17. [17] B. Fitzpatrick, Jr., and N. F. Lauer, Densely homogeneous spaces (I), Houston J. Math. 13 (1987), 19-25. Zbl0635.54009
  18. [18] P. Fletcher and R. A. McCoy, Conditions under which a connected representable space is locally connected, Pacific J. Math. 51 (1974), 433-437. Zbl0293.54013
  19. [19] L. R. Ford, Jr., Homeomorphism groups and coset spaces, Trans. Amer. Math. Soc. 77 (1954), 490-497. Zbl0058.17302
  20. [20] M. K. Fort, Jr., Homogeneity of infinite products of manifolds with boundary, Pacific J. Math. 12 (1962), 879-884. Zbl0112.38004
  21. [21] P. Franklin, Analytic transformations of everywhere dense point sets, Trans. Amer. Math. Soc. 27 (1925), 91-100. Zbl51.0166.01
  22. [22] F. Gross, Research problem 19, Bull. Amer. Math. Soc. 71 (1965), 853. 
  23. [23] F. D. Hammer and W. Knight, Problem and solution 5955, Amer. Math. Monthly 82 (1975), 415-416. 
  24. [24] K. Kuperberg, W. Kuperberg and W. R. R. Transue, On the 2-homogeneity of Cartesian products, Fund. Math. 110 (1980), 131-134. Zbl0475.54025
  25. [25] W. D. Maurer, Conformal equivalence of countable dense sets, Proc. Amer. Math. Soc. 18 (1967), 269-270. Zbl0189.36204
  26. [26] Z. A. Melzak, Existence of certain analytic homeomorphisms, Canad. Math. Bull. 2 (1959), 71-75. Zbl0089.27603
  27. [27] M. Morayne, Measure preserving analytic diffeomorphisms of countable dense sets in C n and n , Colloq. Math. 52 (1987), 93-98. Zbl0627.28012
  28. [28] B. H. Neumann and R. Rado, Monotone functions mapping the set of rational numbers onto itself, J. Austral. Math. Soc. 3 (1963), 282-287. Zbl0136.35103
  29. [29] J. W. Nienhuys and J. G. F. Thiemann, On the existence of entire functions mapping countable dense sets onto each other, Indag. Math. 38 (1976), 331-334. Zbl0336.30009
  30. [30] D. Ravdin, Various types of local homogeneity, Pacific J. Math. 50 (1974), 589-594. Zbl0295.54048
  31. [31] W. L. Saltsman, Some homogeneity problems in point set theory, Ph.D. thesis, Auburn University, 1989. 
  32. [32] D. Sato and S. Rankin, Entire functions mapping countable dense subsets of the reals onto each other monotonically, Bull. Austral. Math. Soc. 10 (1974), 67-70. Zbl0275.30020
  33. [33] P. Stäckel, Ueber arithmetische Eigenschaften analytischer Functionen, Math. Ann. 46 (1895), 513-520. 
  34. [34] J. Steprāns and S. Watson, Homeomorphisms of manifolds with prescribed behaviour on large dense sets, Bull. London Math. Soc. 19 (1987), 305-310. Zbl0637.03051
  35. [35] J. Steprāns and H. X. Zhou, Some results on CDH spaces - I, Topology Appl. 28 (1988), 147-154. Zbl0647.54017
  36. [36] E. Strauss, Problem 6, in: Entire Functions and Related Parts of Analysis, J. Korevaar (ed.), Amer. Math. Soc., Providence, R.I., 1968, 534. 
  37. [37] G. S. Ungar, Countable dense homogeneity and n-homogeneity, Fund. Math. 99 (1978), 155-160. Zbl0392.54017
  38. [38] J. van Mill, Strong local homogeneity does not imply countable dense homogeneity, Proc. Amer. Math. Soc. 84 (1982), 143-148. Zbl0486.54012
  39. [39] S. Watson, The homogeneity of small manifolds, Topology Proc. 13 (1990), 365-370. Zbl0697.57008

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.