Opérations de Hausdorff itérées et réunions croissantes de compacts

Sylvain Kahane

Fundamenta Mathematicae (1992)

  • Volume: 141, Issue: 2, page 169-194
  • ISSN: 0016-2736

Abstract

top
In this paper, motivated by questions in Harmonic Analysis, we study the operation of (countable) increasing union, and show it is not idempotent: ω 1 iterations are needed in general to obtain the closure of a class under this operation. Increasing union is a particular Hausdorff operation, and we present the combinatorial tools which allow to study the power of various Hausdorff operations, and of their iterates. Besides countable increasing union, we study in detail a related Hausdorff operation, which preserves compactness.

How to cite

top

Kahane, Sylvain. "Opérations de Hausdorff itérées et réunions croissantes de compacts." Fundamenta Mathematicae 141.2 (1992): 169-194. <http://eudml.org/doc/211959>.

@article{Kahane1992,
author = {Kahane, Sylvain},
journal = {Fundamenta Mathematicae},
keywords = {countable increasing union; Hausdorff operation; iterations; closure; compacts sets; harmonic analysis; compact thin sets; Dirichlet sets; - sets; exotic sets},
language = {fre},
number = {2},
pages = {169-194},
title = {Opérations de Hausdorff itérées et réunions croissantes de compacts},
url = {http://eudml.org/doc/211959},
volume = {141},
year = {1992},
}

TY - JOUR
AU - Kahane, Sylvain
TI - Opérations de Hausdorff itérées et réunions croissantes de compacts
JO - Fundamenta Mathematicae
PY - 1992
VL - 141
IS - 2
SP - 169
EP - 194
LA - fre
KW - countable increasing union; Hausdorff operation; iterations; closure; compacts sets; harmonic analysis; compact thin sets; Dirichlet sets; - sets; exotic sets
UR - http://eudml.org/doc/211959
ER -

References

top
  1. [1] B. Aniszczyk, J. Burzyk and A. Kamiński, Borel and monotone hierarchies and extension of Rényi probability spaces, Colloq. Math. 51 (1987), 11-25. Zbl0633.60003
  2. [2] J. Arbault, Sur l'ensemble de convergence absolue d'une série trigonométrique, Bull. Soc. Math. France 80 (1952), 253-317. Zbl0048.04202
  3. [3] H. Becker, S. Kahane and A. Louveau, Natural complete Σ 2 1 -sets in Harmonic Analysis, Trans. Amer. Math. Soc., to appear. Zbl0799.04006
  4. [4] G. Choquet, Sur les notions de filtre et de grille, C. R. Acad. Sci. Paris 224 (1947), 171-173. Zbl0029.07602
  5. [5] S. Kahane, Ensembles de convergence absolue, ensembles de Dirichlet faibles et ↑-idéaux, ibid. 310 (1990), 335-337. 
  6. [6] S. Kahane, ↑-idéaux de compacts et applications à l'analyse harmonique, Thèse, Univ. Paris 6, 1990. 
  7. [7] S. Kahane, Antistable classes of thin sets in Harmonic Analysis, Illinois J. Math., to appear. Zbl0793.42003
  8. [8] A. S. Kechris, A. Louveau and W. H. Woodin, The structure of σ-ideals of compact sets,Trans. Amer. Math. Soc. 301 (1987), 263-288. Zbl0633.03043
  9. [9] K. Kuratows, Topology I, Acad. Press, New York 1966. 
  10. [10] H. Lebesgue, Sur les fonctions représentables analytiquement, J. Math. Pures Appl. (6) 1 (1905), 139-216. Zbl36.0453.02

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.