Topological spaces admitting a unique fractal structure

Christoph Bandt; T. Retta

Fundamenta Mathematicae (1992)

  • Volume: 141, Issue: 3, page 257-268
  • ISSN: 0016-2736

Abstract

top
Each homeomorphism from the n-dimensional Sierpiński gasket into itself is a similarity map with respect to the usual metrization. Moreover, the topology of this space determines a kind of Haar measure and a canonical metric. We study spaces with similar properties. It turns out that in many cases, "fractal structure" is not a metric but a topological phenomenon.

How to cite

top

Bandt, Christoph, and Retta, T.. "Topological spaces admitting a unique fractal structure." Fundamenta Mathematicae 141.3 (1992): 257-268. <http://eudml.org/doc/211964>.

@article{Bandt1992,
abstract = {Each homeomorphism from the n-dimensional Sierpiński gasket into itself is a similarity map with respect to the usual metrization. Moreover, the topology of this space determines a kind of Haar measure and a canonical metric. We study spaces with similar properties. It turns out that in many cases, "fractal structure" is not a metric but a topological phenomenon.},
author = {Bandt, Christoph, Retta, T.},
journal = {Fundamenta Mathematicae},
keywords = {edge-balanced graphs; critical points; topological spaces; fractal structure; Sierpiński gasket; similarity map; Haar measure},
language = {eng},
number = {3},
pages = {257-268},
title = {Topological spaces admitting a unique fractal structure},
url = {http://eudml.org/doc/211964},
volume = {141},
year = {1992},
}

TY - JOUR
AU - Bandt, Christoph
AU - Retta, T.
TI - Topological spaces admitting a unique fractal structure
JO - Fundamenta Mathematicae
PY - 1992
VL - 141
IS - 3
SP - 257
EP - 268
AB - Each homeomorphism from the n-dimensional Sierpiński gasket into itself is a similarity map with respect to the usual metrization. Moreover, the topology of this space determines a kind of Haar measure and a canonical metric. We study spaces with similar properties. It turns out that in many cases, "fractal structure" is not a metric but a topological phenomenon.
LA - eng
KW - edge-balanced graphs; critical points; topological spaces; fractal structure; Sierpiński gasket; similarity map; Haar measure
UR - http://eudml.org/doc/211964
ER -

References

top
  1. [1] C. Bandt and K. Keller, Self-similar sets 2. A simple approach to the topological structure of fractals, Math. Nachr. 154 (1991), 27-39. Zbl0824.28007
  2. [2] C. Bandt and K. Keller, Symbolic dynamics for angle-doubling on the circle I. The topology of locally connected Julia sets, in: U. Krengel, K. Richter and V. Warstat (eds.), Ergodic Theory and Related Topics III, Lecture Notes in Math. 1514, Springer, 1992, 1-23. Zbl0768.58013
  3. [3] C. Bandt and T. Kuschel, Self-similar sets 8. Average interior distance in some fractals, Proc. Measure Theory Conference, Oberwolfach 1990, Rend. Circ. Mat. Palermo (2) Suppl. 28 (1992), 307-317. Zbl0851.28003
  4. [4] C. Bandt and T. Retta, Self-similar sets as inverse limits of finite topological spaces, in: C. Bandt, J. Flachsmeyer and H. Haase (eds.), Topology, Measures and Fractals, Akademie-Verlag, Berlin 1992, 41-46. Zbl0831.54015
  5. [5] C. Bandt and J. Stahnke, Self-similar sets. 6. Interior distance on deterministic fractals, preprint, Greifswald 1990. 
  6. [6] M. T. Barlow and E. A. Perkins, Brownian motion on the Sierpiński gasket, Probab. Theory Related Fields 79 (1988), 543-623. Zbl0635.60090
  7. [7] P. F. Duvall, J. W. Emert and L. S. Husch, Iterated function systems, compact semigroups and topological contractions, preprint, University of North Carolina, 1990. Zbl0847.54037
  8. [8] K. J. Falconer, Fractal Geometry, Wiley, 1990. 
  9. [9] J. de Groot, Groups represented as homeomorphism groups I, Math. Ann. 138 (1959), 80-102. Zbl0087.37802
  10. [10] M. Hata, On the structure of self-similar sets, Japan J. Appl. Math. 2 (2) (1985), 381-414. Zbl0608.28003
  11. [11] A. Hinz and A. Schief, The average distance on the Sierpiński gasket, Probab. Theory Related Fields 87 (1990), 129-138. Zbl0688.60074
  12. [12] V. Kannan and M. Rajagopalan, Constructions and applications of rigid spaces, I, Adv. in Math. 29 (1978), 89-130; II, Amer. J. Math. 100 (1978), 1139-1172. Zbl0403.54030
  13. [13] J. Kigami, A harmonic calculus on the Sierpiński spaces, Japan J. Appl. Math. 6 (2) (1989), 259-290. Zbl0686.31003
  14. [14] J. Kigami, Harmonic calculus on p.c.f. self-similar sets, Trans. Amer. Math. Soc., to appear. Zbl0773.31009
  15. [15] K. Kuratowski, Topology, Vol. 2, Polish Scientific Publishers and Academic Press, 1968. 
  16. [16] T. Lindstrøm, Brownian motion on nested fractals, Mem. Amer. Math. Soc. 83 (1990). Zbl0688.60065
  17. [17] C. Penrose, On quotients of the shift associate with dendritic Julia sets of quadratic polynomials, Ph.D. thesis, University of Warwick, 1990. 
  18. [18] W. Rinow, Die innere Geometrie der metrischen Räume, Grundlehren Math. Wiss. 105, Springer, 1961. Zbl0096.16302
  19. [19] W. P. Thurston, On the combinatorics and dynamics of iterated rational maps, preprint, Princeton 1985. 
  20. [20] W. Dębski and J. Mioduszewski, simple plane images of the Sierpiński triangular curve are nowhere dense}, Colloq. Math. 59 (1990), 125-140. Zbl0735.54023

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.