A rigid Boolean algebra that admits the elimination of Q21

H. Mildenberg

Fundamenta Mathematicae (1993)

  • Volume: 142, Issue: 1, page 1-18
  • ISSN: 0016-2736

Abstract

top
Using ♢ , we construct a rigid atomless Boolean algebra that has no uncountable antichain and that admits the elimination of the Malitz quantifier Q 1 2 .

How to cite

top

Mildenberg, H.. "A rigid Boolean algebra that admits the elimination of Q21." Fundamenta Mathematicae 142.1 (1993): 1-18. <http://eudml.org/doc/211970>.

@article{Mildenberg1993,
abstract = {Using ♢ , we construct a rigid atomless Boolean algebra that has no uncountable antichain and that admits the elimination of the Malitz quantifier $Q_1^2$.},
author = {Mildenberg, H.},
journal = {Fundamenta Mathematicae},
keywords = {homogeneous sets; diamond; elimination of Malitz quantifier; rigid atomless Boolean algebra; antichain},
language = {eng},
number = {1},
pages = {1-18},
title = {A rigid Boolean algebra that admits the elimination of Q21},
url = {http://eudml.org/doc/211970},
volume = {142},
year = {1993},
}

TY - JOUR
AU - Mildenberg, H.
TI - A rigid Boolean algebra that admits the elimination of Q21
JO - Fundamenta Mathematicae
PY - 1993
VL - 142
IS - 1
SP - 1
EP - 18
AB - Using ♢ , we construct a rigid atomless Boolean algebra that has no uncountable antichain and that admits the elimination of the Malitz quantifier $Q_1^2$.
LA - eng
KW - homogeneous sets; diamond; elimination of Malitz quantifier; rigid atomless Boolean algebra; antichain
UR - http://eudml.org/doc/211970
ER -

References

top
  1. [Bal-Ku] J. Baldwin and D. W. Kueker, Ramsey quantifiers and the finite cover property, Pacific J. Math. 90 (1980), 11-19. Zbl0471.03022
  2. [Ba] J. E. Baumgartner, Chains and antichains in P (ω), J. Symbolic Logic 45 (1980), 85-92. 
  3. [Ba-Ko] J. E. Baumgartner and P. Komjáth, Boolean algebras in which every chain and antichain is countable, Fund. Math. 111 (1981), 125-133. Zbl0452.03044
  4. [Bü] G. Bürger, The < ω -theory of the class of Archimedian real closed fields, Arch. Math. Logic 28 (1989), 155-166. 
  5. [Ko] P. Koepke, On the elimination of Malitz quantifiers over archimedian real closed fields, ibid., 167-171. Zbl0693.03021
  6. [Mag-Mal] M. Magidor and J. Malitz, Compact extensions of L(Q) (part 1a), Ann. Math. Logic 11 (1977), 217-261. Zbl0356.02012
  7. [Mil] H. Mildenberger, Zur Homogenitätseigenschaft in Erweiterungslogiken, Dissertation, Freiburg 1990. 
  8. [Ot] M. Otto, Ehrenfeucht-Mostowski-Konstruktionen in Erweiterungslogiken, Dissertation, Freiburg 1990. 
  9. [Ro-Tu] P. Rothmaler and P. Tuschik, A two cardinal theorem for homogeneous sets and the elimination of Malitz quantifiers, Trans. Amer. Math. Soc. 269 (1982), 273-283. Zbl0485.03011
  10. [Ru] M. Rubin, A Boolean algebra with few subalgebras, interval Boolean algebras and retractiveness, ibid. 278 (1983), 65-89. Zbl0524.06020
  11. [Sh] S. Shelah, On uncountable Boolean algebras with no uncountable pairwise comparable or incomparable sets of elements, Notre Dame J. Formal Logic 22 (1981), 301-308. Zbl0472.03042

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.