Imposing psendocompact group topologies on Abeliau groups
Fundamenta Mathematicae (1993)
- Volume: 142, Issue: 3, page 221-240
- ISSN: 0016-2736
Access Full Article
topAbstract
topHow to cite
topComfort, W., and Remus, I.. "Imposing psendocompact group topologies on Abeliau groups." Fundamenta Mathematicae 142.3 (1993): 221-240. <http://eudml.org/doc/211983>.
@article{Comfort1993,
abstract = {The least cardinal λ such that some (equivalently: every) compact group with weight α admits a dense, pseudocompact subgroup of cardinality λ is denoted by m(α). Clearly, $m(α) ≤ 2^α$. We show:
Theorem 4.12. Let G be Abelian with |G| = γ. If either m(α) ≤ α and m$(α)≤ r_0 (G) ≤ γ ≤ 2^α$, or α > ω and $α^ω ≤ r_0(G) ≤ 2^α$, then G admits a pseudocompact group topology of weight α.
Theorem 4.15. Every connected, pseudocompact Abelian group G with wG = α ≥ ω satisfies $r_0(G) ≥ m(α)$.
Theorem 5.2(b). If G is divisible Abelian with $2^\{r_\{0\}(G)\} ≤ γ$, then G admits at most $2^γ$-many pseudocompact group topologies.
Theorem 6.2. Let $β = α^ω$ or $β = 2^α$ with β ≥ α, and let $β ≤ γ < κ ≤ 2^β$. Then both $⊕_γℚ$ and the free Abelian group on γ-many generators admit exactly $2^κ$-many pseudocompact group topologies of weight κ. Of these, some $κ^+$-many form a chain and some $2^κ$-many form an anti-chain.},
author = {Comfort, W., Remus, I.},
journal = {Fundamenta Mathematicae},
keywords = {pseudocompact group; $G_δ$-dense subgroup; singular cardinals hypothesis; torsion-free rank; connected topological group; 0-dimensional group; divisible hull; chain; anti-chain; -dense subgroup; pseudocompact group topology},
language = {eng},
number = {3},
pages = {221-240},
title = {Imposing psendocompact group topologies on Abeliau groups},
url = {http://eudml.org/doc/211983},
volume = {142},
year = {1993},
}
TY - JOUR
AU - Comfort, W.
AU - Remus, I.
TI - Imposing psendocompact group topologies on Abeliau groups
JO - Fundamenta Mathematicae
PY - 1993
VL - 142
IS - 3
SP - 221
EP - 240
AB - The least cardinal λ such that some (equivalently: every) compact group with weight α admits a dense, pseudocompact subgroup of cardinality λ is denoted by m(α). Clearly, $m(α) ≤ 2^α$. We show:
Theorem 4.12. Let G be Abelian with |G| = γ. If either m(α) ≤ α and m$(α)≤ r_0 (G) ≤ γ ≤ 2^α$, or α > ω and $α^ω ≤ r_0(G) ≤ 2^α$, then G admits a pseudocompact group topology of weight α.
Theorem 4.15. Every connected, pseudocompact Abelian group G with wG = α ≥ ω satisfies $r_0(G) ≥ m(α)$.
Theorem 5.2(b). If G is divisible Abelian with $2^{r_{0}(G)} ≤ γ$, then G admits at most $2^γ$-many pseudocompact group topologies.
Theorem 6.2. Let $β = α^ω$ or $β = 2^α$ with β ≥ α, and let $β ≤ γ < κ ≤ 2^β$. Then both $⊕_γℚ$ and the free Abelian group on γ-many generators admit exactly $2^κ$-many pseudocompact group topologies of weight κ. Of these, some $κ^+$-many form a chain and some $2^κ$-many form an anti-chain.
LA - eng
KW - pseudocompact group; $G_δ$-dense subgroup; singular cardinals hypothesis; torsion-free rank; connected topological group; 0-dimensional group; divisible hull; chain; anti-chain; -dense subgroup; pseudocompact group topology
UR - http://eudml.org/doc/211983
ER -
References
top- [Ban] B. Banaschewski, Local connectedness of extension spaces, Canad. J. Math. 8 (1956), 395-398.
- [Bau] J. E. Baumgartner, Almost-disjoint sets, the dense set problem and the partition calculus, Ann. Math. Logic 10 (1976), 401-439. Zbl0339.04003
- [BCR] S. Berhanu, W. W. Comfort and J. D. Reid, Counting subgroups and topological group topologies, Pacific J. Math. 116 (1985), 217-241. Zbl0506.22001
- [CEG] F. S. Cater, P. Erdős and F. Galvin, On the density of λ-box products, General Topology Appl. 9 (1978), 307-312. Zbl0394.54002
- [C] W. W. Comfort, Topological groups, in: Handbook of Set-Theoretic Topology, K. Kunen and J. Vaughan (eds.), North-Holland, Amsterdam 1984, 1143-1263.
- [CvM] W. W. Comfort and J. van Mill, Concerning connected, pseudocompact Abelian groups, Topology Appl. 33 (1989), 21-45.
- [CRe1] W. W. Comfort and D. Remus, Long chains of Hausdorff topological group topologies, J. Pure Appl. Algebra 70 (1991), 53-72.
- [CRe2] W. W. Comfort and D. Remus, Pseudocompact topological group topologies, Abstracts Amer. Math. Soc. 12 (1991), p. 289 [= abstract #91T-54-25].
- [CRe3] W. W. Comfort and D. Remus, Pseudocompact topological group topologies on Abelian groups, ibid. 12 (1991), p. 321 [= abstract #91T-22-66].
- [CRob] W. W. Comfort and L. C. Robertson, Cardinality constraints for pseudocompact and for totally dense subgroups of compact topological groups, Pacific J. Math. 119 (1985), 265-285. Zbl0592.22005
- [CRos1] W. W. Comfort and K. A. Ross, Topologies induced by groups of characters, Fund. Math. 55 (1964), 283-291. Zbl0138.02905
- [CRos2] W. W. Comfort and K. A. Ross, Pseudocompactness and uniform continuity in topological groups, Pacific J. Math. 16 (1966), 483-496. Zbl0214.28502
- [DS] D. N. Dikranjan and D. B. Shakhmatov, Pseudocompact topologizations of groups, Zb. Rad. (Niš) 4 (1990), 83-93. Zbl0705.22002
- [vD] E. K. van Douwen, The weight of a pseudocompact (homogeneous) space whose cardinality has countable cofinality, Proc. Amer. Math. Soc. 80 (1980), 678-682. Zbl0446.54011
- [D] R. M. Dudley, Continuity of homomorphisms, Duke Math. J. 28 (1961), 587-594. Zbl0103.01702
- [Fu] L. Fuchs, Infinite Abelian Groups, Vol. I, Pure Appl. Math. 36, Academic Press, New York 1970.
- [GJ] L. Gillman and M. Jerison, Rings of Continuous Functions, Graduate Texts in Math. 43, Springer, New York 1976.
- [Hal] P. R. Halmos, Comment on the real line, Bull. Amer. Math. Soc. 50 (1944), 877-878. Zbl0061.04404
- [Haw] D. Hawley, Compact group topologies for R, Proc. Amer. Math. Soc. 30 (1971), 566-572. Zbl0209.06001
- [HI] M. Henriksen and J. R. Isbell, Local connectedness in the Stone-Čech compactification, Illinois J. Math. 1 (1957), 574-582. Zbl0079.38604
- [HR] E. Hewitt and K. A. Ross, Abstract Harmonic Analysis, Vol. I, Grundlehren Math. Wiss. 115, Springer, Berlin 1963.
- [J] T. Jech, Set Theory, Academic Press, New York 1978.
- [M1] M. Magidor, On the singular cardinals problem I, Israel J. Math. 28 (1977), 1-31. Zbl0364.02040
- [M2] M. Magidor, On the singular cardinals problem II, Ann. of Math. 106 (1977), 517-547. Zbl0365.02057
- [M] O. Masaveu, doctoral dissertation, Wesleyan University, in preparation.
- [T1] M. G. Tkachenko, On pseudocompact topological groups, Interim Report of the Prague Topological Symposium 2/1987 (1987), p. 18, Czechoslovak Acad. Sci., Prague 1987.
- [T2] M. G. Tkachenko, Countably compact and pseudocompact topologies on free Abelian groups, Soviet Math. (Izv. VUZ) 34 (1990), 79-86. Russian original: Izv. Vyssh. Uchebn. Zaved. Mat. 1990 (5) (336), 68-75. Zbl0714.22001
- [We] A. Weil, Sur les espaces à structure uniforme et sur la topologie générale, Publ. Math. Univ. Strasbourg, Hermann, Paris 1937. Zbl63.0569.04
- [Wu] D. E. Wulbert, A characterization of C(X) for locally connected X, Proc. Amer. Math. Soc. 21 (1969), 269-272. Zbl0174.25603
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.