Movability and limits of polyhedra

V. Laguna; M. Moron; Nhu Nguyen; J. Sanjurjo

Fundamenta Mathematicae (1993)

  • Volume: 143, Issue: 3, page 191-201
  • ISSN: 0016-2736

Abstract

top
We define a metric d S , called the shape metric, on the hyperspace 2 X of all non-empty compact subsets of a metric space X. Using it we prove that a compactum X in the Hilbert cube is movable if and only if X is the limit of a sequence of polyhedra in the shape metric. This fact is applied to show that the hyperspace ( 2 2 , dS) i s s e p a r a b l e . O n t h e o t h e r h a n d , w e g i v e a n e x a m p l e s h o w i n g t h a t 2ℝ2 i s n o t s e p a r a b l e i n t h e f u n d a m e n t a l m e t r i c i n t r o d u c e d b y B o r s u k .

How to cite

top

Laguna, V., et al. "Movability and limits of polyhedra." Fundamenta Mathematicae 143.3 (1993): 191-201. <http://eudml.org/doc/212003>.

@article{Laguna1993,
abstract = {We define a metric $d_S$, called the shape metric, on the hyperspace $2^X$ of all non-empty compact subsets of a metric space X. Using it we prove that a compactum X in the Hilbert cube is movable if and only if X is the limit of a sequence of polyhedra in the shape metric. This fact is applied to show that the hyperspace $(2^ℝ^2$, dS)$ is separable. On the other hand, we give an example showing that $2ℝ2$ is not separable in the fundamental metric introduced by Borsuk.$},
author = {Laguna, V., Moron, M., Nguyen, Nhu, Sanjurjo, J.},
journal = {Fundamenta Mathematicae},
keywords = {movability; polyhedron; shape metric; fundamental metric},
language = {eng},
number = {3},
pages = {191-201},
title = {Movability and limits of polyhedra},
url = {http://eudml.org/doc/212003},
volume = {143},
year = {1993},
}

TY - JOUR
AU - Laguna, V.
AU - Moron, M.
AU - Nguyen, Nhu
AU - Sanjurjo, J.
TI - Movability and limits of polyhedra
JO - Fundamenta Mathematicae
PY - 1993
VL - 143
IS - 3
SP - 191
EP - 201
AB - We define a metric $d_S$, called the shape metric, on the hyperspace $2^X$ of all non-empty compact subsets of a metric space X. Using it we prove that a compactum X in the Hilbert cube is movable if and only if X is the limit of a sequence of polyhedra in the shape metric. This fact is applied to show that the hyperspace $(2^ℝ^2$, dS)$ is separable. On the other hand, we give an example showing that $2ℝ2$ is not separable in the fundamental metric introduced by Borsuk.$
LA - eng
KW - movability; polyhedron; shape metric; fundamental metric
UR - http://eudml.org/doc/212003
ER -

References

top
  1. [1] S. A. Bogatyĭ, Approximative and fundamental retracts, Mat. Sb. 93 (135) (1974), 90-102. Zbl0289.54025
  2. [2] K. Borsuk, On some metrization of the hyperspace of compact sets, Fund. Math. 41 (1954), 168-202. Zbl0065.38102
  3. [3] K. Borsuk, Theory of Shape, Monografie Mat. 59, Polish Scientific Publishers, Warszawa, 1975. 
  4. [4] K. Borsuk, On a metrization of the hyperspace of a metric space, Fund. Math. 94 (1977), 191-207. Zbl0371.54059
  5. [5] L. Boxer, Hyperspaces where convergence to a calm limit implies eventual shape equivalence, ibid. 115 (1983), 213-222. Zbl0518.54011
  6. [6] L. Boxer and R. B. Sher, Borsuk's fundamental metric and shape domination, Bull. Acad. Polon. Sci. 26 (1978), 849-853. Zbl0403.55014
  7. [7] Z. Čerin, C p -movably regular convergences, Fund. Math. 119 (1983), 249-268. Zbl0576.54038
  8. [8] Z. Čerin, C-E-movable and (C,D)-E-tame compacta, Houston J. Math. 9 (1983), 9-27. 
  9. [9] Z. Čerin and P. Šostak, Some remarks on Borsuk's fundamental metric, in: Á. Császár (ed.), Proc. Colloq. Topology, Budapest, 1978, Colloq. Math. Soc. János Bolyai 23, North-Holland, Amsterdam, 1980, 233-252. Zbl0455.54029
  10. [10] M. H. Clapp, On a generalization of absolute neighbourhood retracts, Fund. Math. 70 (1971), 117-130. Zbl0231.54012
  11. [11] J. Dydak and J. Segal, Theory of Shape : An Introduction, Lecture Notes in Math. 688, Springer, Berlin, 1978. Zbl0401.54028
  12. [12] S. Godlewski, On shape of solenoids, Bull. Acad. Polon. Sci. 17 (1969), 623-627. Zbl0191.53602
  13. [13] L. S. Husch, Intersections of ANR's, Fund. Math. 104 (1979), 21-26. Zbl0419.55002
  14. [14] V. Klee, Some topological properties of convex sets, Trans. Amer. Math. Soc. 78 (1955), 30-45. Zbl0064.10505
  15. [15] S. Mardešić and J. Segal, Shape Theory, North-Holland, 1982. 
  16. [16] S. B. Nadler, Hyperspaces of Sets, Dekker, New York, 1978. Zbl0432.54007
  17. [17] H. Noguchi, A generalization of absolute neighbourhood retracts, Kodai Math. Sem. Rep. 1 (1953), 20-22. Zbl0052.18803
  18. [18] S. Spież, Movability and uniform movability, Bull. Acad. Polon. Sci. 22 (1974), 43-45. Zbl0279.54021
  19. [19] J. H. Wells and L. R. Williams, Embeddings and Extensions in Analysis, Springer, Berlin, 1975. Zbl0324.46034

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.