Countably metacompact spaces in the constructible universe
Fundamenta Mathematicae (1993)
- Volume: 143, Issue: 3, page 221-230
- ISSN: 0016-2736
Access Full Article
topAbstract
topHow to cite
topSzeptycki, Paul. "Countably metacompact spaces in the constructible universe." Fundamenta Mathematicae 143.3 (1993): 221-230. <http://eudml.org/doc/212006>.
@article{Szeptycki1993,
abstract = {We present a construction from ♢* of a first countable, regular, countably metacompact space with a closed discrete subspace that is not a $G_δ$. In addition some nonperfect spaces with σ-disjoint bases are constructed.},
author = {Szeptycki, Paul},
journal = {Fundamenta Mathematicae},
keywords = {countably metacompact; $G_δ$, ♢*; axiom of constructibility; diamond star; countably metacompact space; nonperfect spaces},
language = {eng},
number = {3},
pages = {221-230},
title = {Countably metacompact spaces in the constructible universe},
url = {http://eudml.org/doc/212006},
volume = {143},
year = {1993},
}
TY - JOUR
AU - Szeptycki, Paul
TI - Countably metacompact spaces in the constructible universe
JO - Fundamenta Mathematicae
PY - 1993
VL - 143
IS - 3
SP - 221
EP - 230
AB - We present a construction from ♢* of a first countable, regular, countably metacompact space with a closed discrete subspace that is not a $G_δ$. In addition some nonperfect spaces with σ-disjoint bases are constructed.
LA - eng
KW - countably metacompact; $G_δ$, ♢*; axiom of constructibility; diamond star; countably metacompact space; nonperfect spaces
UR - http://eudml.org/doc/212006
ER -
References
top- [B] D. K. Burke, PMEA and first countable countably metacompact spaces, Proc. Amer. Math. Soc. 92 (1984), 455-460. Zbl0544.54017
- [C] J. Chaber, Metacompactness and the class of MOBI, Fund. Math. 91 (1976), 211-217. Zbl0343.54010
- [D] P. Davies, Nonperfect space with point-countable bases, Proc. Amer. Math. Soc. 77 (1979), 276-278. Zbl0412.54021
- [vD] E. K. van Douwen, The integers and topology, in: K. Kunen and J. E. Vaughan (eds.), Handbook of Set-Theoretic Topology, North-Holland, Amsterdam, 1984, 111-167.
- [DTW] A. Dow, F. D. Tall and W. A. R. Weiss, New proofs of the consistency of the normal Moore space conjecture I, Topology Appl. 37 (1990), 33-51.
- [F] W. G. Fleissner, Normal Moore spaces in the constructible universe, Proc. Amer. Math. Soc. 46 (1974), 294-298. Zbl0314.54028
- [FR] W. G. Fleissner and M. Reed, Paralindelöf spaces and spaces with a σ-locally countable base, Topology Proc. 2 (1977), 89-110. Zbl0402.54016
- [K] K. Kunen, Set Theory, An Introduction to Independence Proofs, North-Holland, Amsterdam, 1980. Zbl0443.03021
- [N1] P. Nyikos, A provisional solution to the normal Moore space problem, Proc. Amer. Math. Soc. 78 (1980), 429-435. Zbl0446.54030
- [N2] P. Nyikos, Countably metacompact, locally countable spaces in the constructible universe, Topology Appl., to appear. Zbl0893.54017
- [S] P. J. Szeptycki, Uncovering separation properties in the Easton model, preprint. Zbl0862.54019
- [T1] F. D. Tall, Set-theoretic consistence results and topological theorems concerning the normal Moore space conjecture and related problems, Dissertationes Math. 148 (1977).
- [T2] F. D. Tall, Covering and separation properties in the Easton model, Topology Appl. 28 (1988), 155-163.
- [W] S. Watson, Separation in countably paracompact spaces, Trans. Amer. Math. Soc. 290 (1985), 831-842. Zbl0583.54013
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.