The dimension of remainders of rim-compact spaces

J. Aarts; E. Coplakova

Fundamenta Mathematicae (1993)

  • Volume: 143, Issue: 3, page 287-289
  • ISSN: 0016-2736

Abstract

top
Answering a question of Isbell we show that there exists a rim-compact space X such that every compactification Y of X has dim(Y)≥ 1.

How to cite

top

Aarts, J., and Coplakova, E.. "The dimension of remainders of rim-compact spaces." Fundamenta Mathematicae 143.3 (1993): 287-289. <http://eudml.org/doc/212010>.

@article{Aarts1993,
abstract = {Answering a question of Isbell we show that there exists a rim-compact space X such that every compactification Y of X has dim(Y)≥ 1.},
author = {Aarts, J., Coplakova, E.},
journal = {Fundamenta Mathematicae},
keywords = {rim-compact space; compactification},
language = {eng},
number = {3},
pages = {287-289},
title = {The dimension of remainders of rim-compact spaces},
url = {http://eudml.org/doc/212010},
volume = {143},
year = {1993},
}

TY - JOUR
AU - Aarts, J.
AU - Coplakova, E.
TI - The dimension of remainders of rim-compact spaces
JO - Fundamenta Mathematicae
PY - 1993
VL - 143
IS - 3
SP - 287
EP - 289
AB - Answering a question of Isbell we show that there exists a rim-compact space X such that every compactification Y of X has dim(Y)≥ 1.
LA - eng
KW - rim-compact space; compactification
UR - http://eudml.org/doc/212010
ER -

References

top
  1. J. M. Aarts and T. Nishiura [1993], Dimension and Extensions, Elsevier, Amsterdam. 
  2. B. Diamond, J. Hatzenbuhler and D. Mattson [1988], On when a 0-space is rimcompact, Topology Proc. 13, 189-202. 
  3. R. Engelking [1989], General Topology, revised and completed edition, Sigma Ser. Pure Math. 6, Heldermann, Berlin. 
  4. J. R. Isbell [1964], Uniform Spaces, Math. Surveys 12, Amer. Math. Soc., Providence, R.I. 
  5. J. Kulesza [1990], An example in the dimension theory of metrizable spaces, Topology Appl. 35, 109-120. 
  6. Yu. M. Smirnov [1958], An example of a completely regular space with zero-dimensional Čech remainder, not having the property of semibicompactness, Dokl. Akad. Nauk SSSR 120, 1204-1206 (in Russian). 

NotesEmbed ?

top

You must be logged in to post comments.