On strong liftings for projective limits
Fundamenta Mathematicae (1994)
- Volume: 144, Issue: 3, page 209-229
- ISSN: 0016-2736
Access Full Article
topAbstract
topHow to cite
topMacheras, N., and Strauss, W.. "On strong liftings for projective limits." Fundamenta Mathematicae 144.3 (1994): 209-229. <http://eudml.org/doc/212025>.
@article{Macheras1994,
abstract = {We discuss the permanence of strong liftings under the formation of projective limits. The results are based on an appropriate consistency condition of the liftings with the projective system called "self-consistency", which is fulfilled in many situations. In addition, we study the relationship of self-consistency and completion regularity as well as projective limits of lifting topologies.},
author = {Macheras, N., Strauss, W.},
journal = {Fundamenta Mathematicae},
keywords = {lower density; Baire property; strong liftings; projective limits; consistent lifting},
language = {eng},
number = {3},
pages = {209-229},
title = {On strong liftings for projective limits},
url = {http://eudml.org/doc/212025},
volume = {144},
year = {1994},
}
TY - JOUR
AU - Macheras, N.
AU - Strauss, W.
TI - On strong liftings for projective limits
JO - Fundamenta Mathematicae
PY - 1994
VL - 144
IS - 3
SP - 209
EP - 229
AB - We discuss the permanence of strong liftings under the formation of projective limits. The results are based on an appropriate consistency condition of the liftings with the projective system called "self-consistency", which is fulfilled in many situations. In addition, we study the relationship of self-consistency and completion regularity as well as projective limits of lifting topologies.
LA - eng
KW - lower density; Baire property; strong liftings; projective limits; consistent lifting
UR - http://eudml.org/doc/212025
ER -
References
top- [1] A. G. A. G. Babiker, G. Heller and W. Strauss, On strong lifting compactness, with applications to topological vector spaces, J. Austral. Math. Soc. Ser. A 41 (1986), 211-223. Zbl0611.28003
- [2] A. G. A. G. Babiker and W. Strauss, Almost strong liftings and τ-additivity, in: Measure Theory, Proc. Oberwolfach, 1979, D. Kölzow (ed.), Lecture Notes in Math. 794, Springer, 1980, 220-227.
- [3] A. Bellow, Lifting compact spaces, ibid., 233-253.
- [4] S. Bochner, Harmonic Analysis and the Theory of Probability, Univ. of California Press, Berkeley, 1955. Zbl0068.11702
- [5] J. R. Choksi, Inverse limits of measure spaces, Proc. London Math. Soc. (3) 8 (1958), 321-342. Zbl0085.04003
- [6] J. R. Choksi, Recent developments arising out of Kakutani's work on completion regularity of measures, in: Contemp. Math. 26, Amer. Math. Soc., 1984, 8-93. Zbl0538.28008
- [7] J. Dixmier, Sur certains espaces considérés par M. H. Stone, Summa Brasil. Math. 2 (1951), 151-182.
- [8] J. Dugundji, Topology, Allyn and Bacon, Boston, 1970.
- [9] D. H. Fremlin, Products of Radon measures: A counter-example, Canad. Math. Bull. 19 (1976), 285-289. Zbl0353.28005
- [10] D. H. Fremlin, Losert's example, Note of 18/9/79, University of Essex, Mathematics Department.
- [11] S. Graf, Schnitte Boolescher Korrespondenzen und Ihre Dualisierungen, Dissertation, Erlangen, 1973.
- [12] S. Graf, On the existence of strong liftings in second countable topological spaces, Pacific J. Math. 58 (1975), 419-426. Zbl0304.46025
- [13] P. R. Halmos, Measure Theory, Van Nostrand Reinhold, New York, 1950.
- [14] A. and C. Ionescu Tulcea, Topics in the Theory of Lifting, Springer, Berlin, 1969. Zbl0179.46303
- [15] K. Jacobs, Measure and Integral, Academic Press, New York, 1978.
- [16] S. Kakutani, Notes on infinite product measures, II, Proc. Imperial Acad. Tokyo 19 (1943), 184-188. Zbl0061.09701
- [17] J. D. Knowles, Measures on topological spaces, Proc. London Math. Soc. 17 (1967), 139-156. Zbl0154.05101
- [18] V. Losert, A measure space without the strong lifting property, Math. Ann. 239 (1979), 119-128. Zbl0402.46031
- [19] N. D. Macheras, On inductive limits of measure spaces and projective limits of -spaces, Mathematika 36 (1989), 116-130. Zbl0662.28005
- [20] N. D. Macheras, On limit permanence of projectivity and injectivity, Bull. Greek Math. Soc., to appear.
- [21] N. D. Macheras and W. Strauss, On various strong lifting properties for topological measure spaces, Rend. Circ. Mat. Palermo (2) Suppl. 28 (1992), 149-162. Zbl0761.28005
- [22] N. D. Macheras and W. Strauss, On products of almost strong liftings, J. Austral. Math. Soc., to appear. Zbl0879.28008
- [23] D. Maharam, On a theorem of von Neumann, Proc. Amer. Math. Soc. 9 (1958), 987-994.
- [24] W. Moran, The additivity of measures on completely regular spaces, J. London Math. Soc. 43 (1968), 633-639. Zbl0159.07802
- [25] K. Musiał, Projective limits of perfect measure spaces, Fund. Math. 110 (1980), 163-189. Zbl0393.28010
- [26] J. von Neumann, Algebraische Repräsentanten der Funktionen bis auf eine Menge von Masse Null, J. Reine Angew. Math. 165 (1931), 109-115. Zbl0003.10602
- [27] S. Okada and Y. Okazaki, Projective limit of infinite Radon measures, J. Austral. Math. Soc. Ser. A 25 (1978), 328-331. Zbl0427.28012
- [28] J. C. Oxtoby, Measure and Category, Springer, Berlin, 1970.
- [29] M. M. Rao, Projective limits of probability spaces, J. Multivariate Anal. 1 (1971), 28-57 . Zbl0274.60006
- [30] M. Talagrand, Closed convex hull of set of measurable functions, Riemann-measurable functions and measurability of translations, Ann. Inst. Fourier (Grenoble) 32 (1) (1982), 39-69. Zbl0452.28004
- [31] T. Traynor, An elementary proof of the lifting theorem, Pacific J. Math. 53 (1974), 267-272. Zbl0258.46043
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.