Decomposing Baire class 1 functions into continuous functions
Saharon Shelah; Juris Steprans
Fundamenta Mathematicae (1994)
- Volume: 145, Issue: 2, page 171-180
- ISSN: 0016-2736
Access Full Article
topAbstract
topHow to cite
topShelah, Saharon, and Steprans, Juris. "Decomposing Baire class 1 functions into continuous functions." Fundamenta Mathematicae 145.2 (1994): 171-180. <http://eudml.org/doc/212041>.
@article{Shelah1994,
abstract = {It is shown to be consistent that every function of first Baire class can be decomposed into $ℵ_1$ continuous functions yet the least cardinal of a dominating family in $^ωω$ is $ℵ_2$. The model used in the one obtained by adding $ω_2$ Miller reals to a model of the Continuum Hypothesis.},
author = {Shelah, Saharon, Steprans, Juris},
journal = {Fundamenta Mathematicae},
keywords = {Baire class 1 function; superperfect forcing},
language = {eng},
number = {2},
pages = {171-180},
title = {Decomposing Baire class 1 functions into continuous functions},
url = {http://eudml.org/doc/212041},
volume = {145},
year = {1994},
}
TY - JOUR
AU - Shelah, Saharon
AU - Steprans, Juris
TI - Decomposing Baire class 1 functions into continuous functions
JO - Fundamenta Mathematicae
PY - 1994
VL - 145
IS - 2
SP - 171
EP - 180
AB - It is shown to be consistent that every function of first Baire class can be decomposed into $ℵ_1$ continuous functions yet the least cardinal of a dominating family in $^ωω$ is $ℵ_2$. The model used in the one obtained by adding $ω_2$ Miller reals to a model of the Continuum Hypothesis.
LA - eng
KW - Baire class 1 function; superperfect forcing
UR - http://eudml.org/doc/212041
ER -
References
top- [1] J. Cichoń, M. Morayne, J. Pawlikowski, and S. Solecki, Decomposing Baire functions, J. Symbolic Logic 56 (1991), 1273-1283. Zbl0742.04003
- [2] M. Groszek, Combinatorics on ideals and forcing with trees, ibid. 52 (1987), 582-593. Zbl0646.03048
- [3] A. Miller, Rational perfect set forcing, in: Axiomatic Set Theory, D. A. Martin, J. Baumgartner and S. Shelah (eds.), Contemp. Math. 31, Amer. Math. Soc., Providence, R.I., 1984, 143-159.
- [4] S. Shelah, Proper Forcing, Lecture Notes in Math. 940, Springer, Berlin, 1982.
- [5] J. Steprāns, A very discontinuous Borel function, J. Symbolic Logic 58 (1993), 1268-1283. Zbl0805.03036
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.