Linear orders and MA + ¬wKH

Zoran Spasojević

Fundamenta Mathematicae (1995)

  • Volume: 146, Issue: 3, page 215-238
  • ISSN: 0016-2736

Abstract

top
I prove that the statement that “every linear order of size 2 ω can be embedded in ( ω ω , ) ” is consistent with MA + ¬ wKH.

How to cite

top

Spasojević, Zoran. "Linear orders and MA + ¬wKH." Fundamenta Mathematicae 146.3 (1995): 215-238. <http://eudml.org/doc/212063>.

@article{Spasojević1995,
abstract = {I prove that the statement that “every linear order of size $2^ω$ can be embedded in $(ω^ω, ≪)$” is consistent with MA + ¬ wKH.},
author = {Spasojević, Zoran},
journal = {Fundamenta Mathematicae},
keywords = {linear order; weak Kurepa hypothesis; Martin's axiom},
language = {eng},
number = {3},
pages = {215-238},
title = {Linear orders and MA + ¬wKH},
url = {http://eudml.org/doc/212063},
volume = {146},
year = {1995},
}

TY - JOUR
AU - Spasojević, Zoran
TI - Linear orders and MA + ¬wKH
JO - Fundamenta Mathematicae
PY - 1995
VL - 146
IS - 3
SP - 215
EP - 238
AB - I prove that the statement that “every linear order of size $2^ω$ can be embedded in $(ω^ω, ≪)$” is consistent with MA + ¬ wKH.
LA - eng
KW - linear order; weak Kurepa hypothesis; Martin's axiom
UR - http://eudml.org/doc/212063
ER -

References

top
  1. [K] K. Kunen, Set Theory. An Introduction to Independence Proofs, North-Holland, 1980. 
  2. [L] R. Laver, Linear orders in ( ω ) ω under eventual dominance, in: Logic Colloquium ’78, M. Boffa, D. van Dalen and K. McAloon (eds.), North-Holland, 1979, 299-302. 
  3. [M] W. Mitchell, Aronszajn trees and the independence of the transfer property, Ann. Math. Logic 5 (1972), 21-46. Zbl0255.02069
  4. [T] S. Todorčević, Some consequences of MA + ¬ wKH, Topology Appl. 12 (1981), 187-202. 
  5. [W] W. H. Woodin, Set theory and discontinuous homomorphisms from Banach algebras, Ph.D. thesis, University of California-Berkeley, 1983. 

NotesEmbed ?

top

You must be logged in to post comments.