Quasivarieties of pseudocomplemented semilattices

M. Adams; Wiesław Dziobiak; Matthew Gould; Jürg Schmid

Fundamenta Mathematicae (1995)

  • Volume: 146, Issue: 3, page 295-312
  • ISSN: 0016-2736

Abstract

top
Two properties of the lattice of quasivarieties of pseudocomplemented semilattices are established, namely, in the quasivariety generated by the 3-element chain, there is a sublattice freely generated by ω elements and there are 2 ω quasivarieties.

How to cite

top

Adams, M., et al. "Quasivarieties of pseudocomplemented semilattices." Fundamenta Mathematicae 146.3 (1995): 295-312. <http://eudml.org/doc/212068>.

@article{Adams1995,
abstract = {Two properties of the lattice of quasivarieties of pseudocomplemented semilattices are established, namely, in the quasivariety generated by the 3-element chain, there is a sublattice freely generated by ω elements and there are $2^ω$ quasivarieties.},
author = {Adams, M., Dziobiak, Wiesław, Gould, Matthew, Schmid, Jürg},
journal = {Fundamenta Mathematicae},
keywords = {lattice of quasivarieties; pseudocomplemented semilattice; quasivariety},
language = {eng},
number = {3},
pages = {295-312},
title = {Quasivarieties of pseudocomplemented semilattices},
url = {http://eudml.org/doc/212068},
volume = {146},
year = {1995},
}

TY - JOUR
AU - Adams, M.
AU - Dziobiak, Wiesław
AU - Gould, Matthew
AU - Schmid, Jürg
TI - Quasivarieties of pseudocomplemented semilattices
JO - Fundamenta Mathematicae
PY - 1995
VL - 146
IS - 3
SP - 295
EP - 312
AB - Two properties of the lattice of quasivarieties of pseudocomplemented semilattices are established, namely, in the quasivariety generated by the 3-element chain, there is a sublattice freely generated by ω elements and there are $2^ω$ quasivarieties.
LA - eng
KW - lattice of quasivarieties; pseudocomplemented semilattice; quasivariety
UR - http://eudml.org/doc/212068
ER -

References

top
  1. [1] M. E. Adams, Implicational classes of pseudocomplemented distributive lattices, J. London Math. Soc. 13 (1976), 381-384. Zbl0358.06025
  2. [2] M. E. Adams and W. Dziobiak, Q-universal quasivarieties of algebras, Proc. Amer. Math. Soc. 120 (1994), 1053-1059. Zbl0810.08007
  3. [3] M. E. Adams and W. Dziobiak, Lattices of quasivarieties of 3-element algebras, J. Algebra 166 (1994), 181-210. 
  4. [4] M. E. Adams and M. Gould, A construction for pseudocomplemented semilattices and two applications, Proc. Amer. Math. Soc. 106 (1989), 899-905. Zbl0695.06004
  5. [5] S. Burris and H. P. Sankappanavar, A Course in Universal Algebra, Springer, New York, 1981. 
  6. [6] W. Dziobiak, On subquasivariety lattices of some varieties related with distributive p-algebras, Algebra Universalis 21 (1985), 62-67. Zbl0589.08007
  7. [7] G. Grätzer, General Lattice Theory, Birkhäuser, Basel, 1978. Zbl0436.06001
  8. [8] G. T. Jones, Pseudocomplemented semilattices, Ph.D. dissertation, U.C.L.A., 1972. 
  9. [9] A. I. Mal'cev, On certain frontier questions in algebra and mathematical logic, Proc. Internat. Congr. of Mathematicians, Moscow 1966, Mir, 1968, 217-231 (in Russian). 
  10. [10] A. I. Mal'cev, Algebraic Systems, Grundlehren Math. Wiss. 192, Springer, New York, 1973. 
  11. [11] H. P. Sankappanavar, Remarks on subdirectly irreducible pseudocomplemented semi-lattices and distributive pseudocomplemented lattices, Math. Japon. 25 (1980), 519-521. Zbl0472.06009
  12. [12] M. V. Sapir, The lattice of quasivarieties of semigroups, Algebra Universalis 21 (1985), 172-180. Zbl0599.08014
  13. [13] J. Schmid, Lee classes and sentences for pseudocomplemented semilattices, ibid. 25 (1988), 223-232. Zbl0619.06005
  14. [14] J. Schmid, On amalgamation classes of pseudocomplemented semilattices, ibid. 29 (1992), 402-418. Zbl0783.06003
  15. [15] A. Shafaat, On implicational completeness, Canad. J. Math. 26 (1974), 761-768. Zbl0295.08003
  16. [16] M. P. Tropin, An embedding of a free lattice into the lattice of quasivarieties of distributive lattices with pseudocomplementation, Algebra i Logika 22 (1983), 159-167 (in Russian). 
  17. [17] A. Wroński, The number of quasivarieties of distributive lattices with pseudocomplementation, Polish Acad. Sci. Inst. Philos. Sociol. Sect. Logic 5 (1976), 115-121. Zbl0388.06009

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.