Large families of dense pseudocompact subgroups of compact groups
Gerald Itzkowitz; Dmitri Shakhmatov
Fundamenta Mathematicae (1995)
- Volume: 147, Issue: 3, page 197-212
- ISSN: 0016-2736
Access Full Article
topAbstract
topHow to cite
topItzkowitz, Gerald, and Shakhmatov, Dmitri. "Large families of dense pseudocompact subgroups of compact groups." Fundamenta Mathematicae 147.3 (1995): 197-212. <http://eudml.org/doc/212085>.
@article{Itzkowitz1995,
abstract = {We prove that every nonmetrizable compact connected Abelian group G has a family H of size |G|, the maximal size possible, consisting of proper dense pseudocompact subgroups of G such that H ∩ H'=\{0\} for distinct H,H' ∈ H. An easy example shows that connectedness of G is essential in the above result. In the general case we establish that every nonmetrizable compact Abelian group G has a family H of size |G| consisting of proper dense pseudocompact subgroups of G such that each intersection H H' of different members of H is nowhere dense in G. Some results in the non-Abelian case are also given.},
author = {Itzkowitz, Gerald, Shakhmatov, Dmitri},
journal = {Fundamenta Mathematicae},
keywords = {nonmetrizable compact connected Abelian group; proper dense pseudocompact subgroups},
language = {eng},
number = {3},
pages = {197-212},
title = {Large families of dense pseudocompact subgroups of compact groups},
url = {http://eudml.org/doc/212085},
volume = {147},
year = {1995},
}
TY - JOUR
AU - Itzkowitz, Gerald
AU - Shakhmatov, Dmitri
TI - Large families of dense pseudocompact subgroups of compact groups
JO - Fundamenta Mathematicae
PY - 1995
VL - 147
IS - 3
SP - 197
EP - 212
AB - We prove that every nonmetrizable compact connected Abelian group G has a family H of size |G|, the maximal size possible, consisting of proper dense pseudocompact subgroups of G such that H ∩ H'={0} for distinct H,H' ∈ H. An easy example shows that connectedness of G is essential in the above result. In the general case we establish that every nonmetrizable compact Abelian group G has a family H of size |G| consisting of proper dense pseudocompact subgroups of G such that each intersection H H' of different members of H is nowhere dense in G. Some results in the non-Abelian case are also given.
LA - eng
KW - nonmetrizable compact connected Abelian group; proper dense pseudocompact subgroups
UR - http://eudml.org/doc/212085
ER -
References
top- [1] S. Balcerzyk and J. Mycielski, On the existence of free subgroups of topological groups, Fund. Math. 44 (1957), 303-308. Zbl0079.04003
- [2] T. Bröcker and T. Dieck, Representations of Compact Lie Groups, Springer, Berlin, 1985. Zbl0581.22009
- [3] W. W. Comfort, Some questions and answers in topological groups, in: Memorias del Seminario Especial de Topologia, vol. 5, Javier Bracho and Carlos Prieto (eds.), Instituto de Matemat. del'UNAM, México, 1983, 131-149.
- [4] W. W. Comfort, On the "fragmentation" of certain pseudocompact groups, Bull. Greek Math. Soc. 25 (1984), 1-13. Zbl0592.22006
- [5] W. W. Comfort, Topological groups, in: Handbook of Set-Theoretic Topology, K. Kunen and J. E. Vaughan (eds.), North-Holland, Amsterdam, 1984, 1143-1263.
- [6] W. W. Comfort, Some progress and problems in topological groups, in: General Topology and its Relations to Modern Analysis and Algebra VI, Proc. Sixth 1986 Prague Topological Symposium, Z. Frolík (ed.), Heldermann, Berlin, 1988, 95-108.
- [7] W. W. Comfort and J. van Mill, Concerning connected pseudocompact Abelian groups, Topology Appl. 33 (1989), 21-45.
- [8] W. W. Comfort and S. Negrepontis, The Theory of Ultrafilters, Springer, Berlin, 1974.
- [9] W. W. Comfort and L. C. Robertson, Extremal phenomena in certain classes of totally bounded groups, Dissertationes Math. 272 (1988). Zbl0703.22002
- [10] W. W. Comfort and K. A. Ross, Pseudocompactness and uniform continuity in topological groups, Pacific J. Math. 16 (1966), 483-496. Zbl0214.28502
- [11] W. W. Comfort and T. Soundararajan, Pseudocompact group topologies and totally dense subgroups, ibid. 100 (1982), 61-84.
- [12] D. Dikranjan, Zero-dimensionality of some pseudocompact groups, Proc. Amer. Math. Soc. 120 (1994), 1299-1308. Zbl0846.54027
- [13] R. Engelking, General Topology, Heldermann, Berlin, 1989.
- [14] E. Hewitt, Rings of real-valued continuous functions, I, Trans. Amer. Math. Soc. 64 (1948), 45-99. Zbl0032.28603
- [15] E. Hewitt and K. Ross, Abstract Harmonic Analysis, Vol. I, Springer, Berlin, 1963. Zbl0115.10603
- [16] G. L. Itzkowitz, Extensions of Haar measure for compact connected Abelian groups, Indag. Math. 27 (1965), 190-207. Zbl0135.06701
- [17] G. Itzkowitz and D. Shakhmatov, Almost disjoint, dense pseudocompact subgroups of compact Abelian groups, in: Abstracts of Eighth Summer Conf. on General Topology and Applications (Queens College, CUNY, June 18-20, 1992), p. 37. Zbl0835.22004
- [18] G. Itzkowitz and D. Shakhmatov, Dense countably compact subgroups of compact groups, Math. Japon., to appear. Zbl0897.22005
- [19] G. Itzkowitz and D. Shakhmatov, Haar nonmeasurable partitions of compact groups, submitted. Zbl0887.22004
- [20] J. Price, Lie Groups and Compact Groups, London Math. Soc. Lecture Note Ser. 25, Cambridge Univ. Press, Cambridge, 1977. Zbl0348.22001
- [21] M. Rajagopalan and H. Subrahmanian, Dense subgroups of locally compact groups, Colloq. Math. 35 (1976), 289-292.
- [22] D. Remus, Minimal and precompact group topologies on free groups, J. Pure Appl. Algebra 70 (1991), 147-157. Zbl0726.22001
- [23] N. Th. Varopoulos, A theorem on the continuity of homomorphisms of locally compact groups, Proc. Cambridge Philos. Soc. 60 (1964), 449-463. Zbl0121.03704
- [24] H. Wilcox, Pseudocompact groups, Pacific J. Math. 19 (1966), 365-379. Zbl0143.04802
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.