Transverse Hausdorff dimension of codim-1 C2-foliations

Takashi Inaba; Paweł Walczak

Fundamenta Mathematicae (1996)

  • Volume: 149, Issue: 3, page 239-244
  • ISSN: 0016-2736

Abstract

top
The Hausdorff dimension of the holonomy pseudogroup of a codimension-one foliation ℱ is shown to coincide with the Hausdorff dimension of the space of compact leaves (traced on a complete transversal) when ℱ is non-minimal, and to be equal to zero when ℱ is minimal with non-trivial leaf holonomy.

How to cite

top

Inaba, Takashi, and Walczak, Paweł. "Transverse Hausdorff dimension of codim-1 C2-foliations." Fundamenta Mathematicae 149.3 (1996): 239-244. <http://eudml.org/doc/212121>.

@article{Inaba1996,
abstract = {The Hausdorff dimension of the holonomy pseudogroup of a codimension-one foliation ℱ is shown to coincide with the Hausdorff dimension of the space of compact leaves (traced on a complete transversal) when ℱ is non-minimal, and to be equal to zero when ℱ is minimal with non-trivial leaf holonomy.},
author = {Inaba, Takashi, Walczak, Paweł},
journal = {Fundamenta Mathematicae},
keywords = {Hausdorff dimension; holonomy pseudogroup; foliation; compact leaves},
language = {eng},
number = {3},
pages = {239-244},
title = {Transverse Hausdorff dimension of codim-1 C2-foliations},
url = {http://eudml.org/doc/212121},
volume = {149},
year = {1996},
}

TY - JOUR
AU - Inaba, Takashi
AU - Walczak, Paweł
TI - Transverse Hausdorff dimension of codim-1 C2-foliations
JO - Fundamenta Mathematicae
PY - 1996
VL - 149
IS - 3
SP - 239
EP - 244
AB - The Hausdorff dimension of the holonomy pseudogroup of a codimension-one foliation ℱ is shown to coincide with the Hausdorff dimension of the space of compact leaves (traced on a complete transversal) when ℱ is non-minimal, and to be equal to zero when ℱ is minimal with non-trivial leaf holonomy.
LA - eng
KW - Hausdorff dimension; holonomy pseudogroup; foliation; compact leaves
UR - http://eudml.org/doc/212121
ER -

References

top
  1. [Ar] V. I. Arnold, Small denominators. I. Mappings of the circumference onto itself, Izv. Akad. Nauk SSSR Ser. Mat. 25 (1962), 21-86 (in Russian); English transl.: Amer. Math. Soc. Transl. 46 (1965), 213-284. 
  2. [Ed] G. A. Edgar, Measure, Topology and Fractal Geometry, Undergrad. Texts in Math., Springer, New York, 1990. 
  3. [HH] G. Hector and U. Hirsch, Introduction to the Geometry of Foliations, Part B, Vieweg, Braunschweig, 1983. 
  4. [He] M. Herman, Sur la conjugaison différentiable des difféomorphismes du cercle à des rotations, Publ. Math. IHES 49 (1979), 1-233. Zbl0448.58019
  5. [La] C. Lamoureux, Quelques conditions d'existence de feuilles compactes, Ann. Inst. Fourier (Grenoble) 24 (4) (1974), 229-240. Zbl0287.57009
  6. [Sa] R. Sacksteder, Foliations and pseudogroups, Amer. J. Math. 87 (1965), 79-102. Zbl0136.20903
  7. [Ta] I. Tamura, Topology of Foliations: An Introduction, Amer. Math. Soc., Providence, 1992. 
  8. [Wa] P. Walczak, Losing Hausdorff dimension while generating pseudogroups, this issue, 211-237. Zbl0861.54033

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.