A dimension raising hereditary shape equivalence

Jan Dijkstra

Fundamenta Mathematicae (1996)

  • Volume: 149, Issue: 3, page 265-274
  • ISSN: 0016-2736

Abstract

top
We construct a hereditary shape equivalence that raises transfinite inductive dimension from ω to ω+1. This shows that ind and Ind do not admit a geometric characterisation in the spirit of Alexandroff's Essential Mapping Theorem, answering a question asked by R. Pol.

How to cite

top

Dijkstra, Jan. "A dimension raising hereditary shape equivalence." Fundamenta Mathematicae 149.3 (1996): 265-274. <http://eudml.org/doc/212123>.

@article{Dijkstra1996,
abstract = {We construct a hereditary shape equivalence that raises transfinite inductive dimension from ω to ω+1. This shows that ind and Ind do not admit a geometric characterisation in the spirit of Alexandroff's Essential Mapping Theorem, answering a question asked by R. Pol.},
author = {Dijkstra, Jan},
journal = {Fundamenta Mathematicae},
keywords = {hereditary shape equivalence; transfinite inductive dimension},
language = {eng},
number = {3},
pages = {265-274},
title = {A dimension raising hereditary shape equivalence},
url = {http://eudml.org/doc/212123},
volume = {149},
year = {1996},
}

TY - JOUR
AU - Dijkstra, Jan
TI - A dimension raising hereditary shape equivalence
JO - Fundamenta Mathematicae
PY - 1996
VL - 149
IS - 3
SP - 265
EP - 274
AB - We construct a hereditary shape equivalence that raises transfinite inductive dimension from ω to ω+1. This shows that ind and Ind do not admit a geometric characterisation in the spirit of Alexandroff's Essential Mapping Theorem, answering a question asked by R. Pol.
LA - eng
KW - hereditary shape equivalence; transfinite inductive dimension
UR - http://eudml.org/doc/212123
ER -

References

top
  1. [1] P. S. Alexandroff, Dimensionstheorie. Ein Beitrag zur Geometrie der abgeschlossenen Mengen, Math. Ann. 106 (1932), 161-238. Zbl58.0624.01
  2. [2] F. D. Ancel, The role of countable dimensionality in the theory of cell-like relations, Trans. Amer. Math. Soc. 287 (1985), 1-40. Zbl0507.54017
  3. [3] F. D. Ancel, Proper hereditary shape equivalences preserve Property C, Topology Appl. 19 (1985), 71-74. Zbl0568.54017
  4. [4] P. Borst, Transfinite classifications of weakly infinite-dimensional spaces, Free University Press, Amsterdam, 1986. 
  5. [5] P. Borst and J. J. Dijkstra, Essential mappings and transfinite dimension, Fund. Math. 125 (1985), 41-45. Zbl0588.54033
  6. [6] J. J. Dijkstra, J. van Mill, and J. Mogilski, An AR-map whose range is more infinite-dimensional than its domain, Proc. Amer. Math. Soc. 114 (1992), 279-285. Zbl0765.54028
  7. [7] J. J. Dijkstra and J. Mogilski, A geometric approach to the dimension theory of infinite-dimensional spaces, in: Proc. 8th Ann. Workshop Geom. Topology, Univ. of Wisconsin-Milwaukee, 1991, 59-63. 
  8. [8] T. Dobrowolski and L. Rubin, The hyperspaces of infinite-dimensional compacta for covering and cohomological dimension are homeomorphic, Pacific J. Math. 164 (1994), 15-39. Zbl0801.54005
  9. [9] A. N. Dranišnikov [A. N. Dranishnikov], On a problem of P. S. Alexandrov, Mat. Sb. 135 (1988), 551-557 (in Russian). 
  10. [10] R. Engelking, Dimension Theory, North-Holland, Amsterdam, 1978. 
  11. [11] R. Geoghegan and R. R. Summerhill, Pseudo-boundaries and pseudo-interiors in euclidean spaces and topological manifolds, Trans. Amer. Math. Soc. 194 (1974), 141-165. Zbl0288.57001
  12. [12] W. E. Haver, Mappings between ANR's that are fine homotopy equivalences, Pacific J. Math. 58 (1975), 457-461. Zbl0311.55006
  13. [13] D. W. Henderson, A lower bound for transfinite dimension, Fund. Math. 64 (1968), 167-173. Zbl0167.51301
  14. [14] W. Hurewicz, Ueber unendlich-dimensionale Punktmengen, Proc. Akad. Amsterdam 31 (1928), 916-922. Zbl54.0620.05
  15. [15] G. Kozlowski, Images of ANR's, unpublished manuscript. 
  16. [16] J. van Mill and J. Mogilski, Property C and fine homotopy equivalences, Proc. Amer. Math. Soc. 90 (1984), 118-120. Zbl0548.57006
  17. [17] R. Pol, On a classification of weakly infinite-dimensional compacta, Topology Proc. 5 (1980), 231-242. Zbl0473.54024
  18. [18] R. Pol, On classification of weakly infinite-dimensional compacta, Fund. Math. 116 (1983), 169-188. Zbl0571.54030
  19. [19] Ju. M. Smirnov, On universal spaces for certain classes of infinite dimensional spaces, Amer. Math. Soc. Transl. Ser. 2, 21 (1962), 21-33. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.