Locally constant functions
Fundamenta Mathematicae (1996)
- Volume: 150, Issue: 1, page 67-96
- ISSN: 0016-2736
Access Full Article
topAbstract
topHow to cite
topReferences
top- [1] A. V. Arkhangel'skiĭ and V. V. Fedorchuk, General Topology I, Basic Concepts and Constructions, Dimension Theory, Springer, 1990.
- [2] A. Bella, A. Hager, J. Martinez, S. Woodward and H. Zhou, Specker spaces and their absolutes, I, preprint. Zbl0856.54039
- [3] A. Bella, J. Martinez and S. Woodward, Algebras and spaces of dense constancies, preprint. Zbl1079.54506
- [4] Y. Benyamini, M. E. Rudin and M. Wage, Continuous images of weakly compact subsets of Banach spaces, Pacific J. Math. 70 (1977), 309-324. Zbl0374.46011
- [5] A. Bernard, Une fonction non Lipschitzienne peut-elle opérer sur un espace de Banach de fonctions non trivial?, J. Funct. Anal. 122 (1994), 451-477.
- [6] A. Bernard, A strong superdensity property for some subspaces of C(X), prépublication de l'Institut Fourier, Laboratoire de Mathématiques, 1994.
- [7] A. Bernard and S. J. Sidney, Banach like normed linear spaces, preprint, 1994.
- [8] M. Džamonja and K. Kunen, Properties of the class of measure separable compact spaces, Fund. Math. 147 (1995), 261-277. Zbl1068.28502
- [9] P. R. Halmos, Lectures on Boolean Algebras, Van Nostrand, 1963.
- [10] T. Jech, Set Theory, Academic Press, 1978.
- [11] K. Kunen, Set Theory, North-Holland, 1980.
- [12] J. Martinez and S. Woodward, Specker spaces and their absolutes, II, Algebra Universalis, to appear. Zbl0886.54031
- [13] J. van Mill, A homogeneous Eberlein compact space which is not metrizable, Pacific J. Math. 101 (1982), 141-146. Zbl0495.54020
- [14] M. E. Rudin and W. Rudin, Continuous functions that are locally constant on dense sets, J. Funct. Anal. 133 (1995), 120-137.
- [15] S. J. Sidney, Some very dense subspaces of C(X), preprint, 1994.
- [6] R. Sikorski, Boolean Algebras, Springer, 1964.