There exists a polyhedron dominating infinitely many different homotopy types

Danuta Kołodziejczyk

Fundamenta Mathematicae (1996)

  • Volume: 151, Issue: 1, page 39-46
  • ISSN: 0016-2736

How to cite


Kołodziejczyk, Danuta. "There exists a polyhedron dominating infinitely many different homotopy types." Fundamenta Mathematicae 151.1 (1996): 39-46. <>.

author = {Kołodziejczyk, Danuta},
journal = {Fundamenta Mathematicae},
keywords = {polyhedron; homotopy types; shape theory},
language = {eng},
number = {1},
pages = {39-46},
title = {There exists a polyhedron dominating infinitely many different homotopy types},
url = {},
volume = {151},
year = {1996},

AU - Kołodziejczyk, Danuta
TI - There exists a polyhedron dominating infinitely many different homotopy types
JO - Fundamenta Mathematicae
PY - 1996
VL - 151
IS - 1
SP - 39
EP - 46
LA - eng
KW - polyhedron; homotopy types; shape theory
UR -
ER -


  1. [BDu] P. H. Berridge and M. J. Dunwoody, Non-free projective modules for torsion-free groups, J. London Math. Soc. (2) 19 (1979), 433-436. Zbl0399.20005
  2. [B] K. Borsuk, Some problems in the theory of shape of compacta, Russian Math. Surveys 34 (6) (1979), 24-26. Zbl0453.55010
  3. [B1] K. Borsuk, Theory of Shape, Monograf. Mat. 59, PWN-Polish Scientific Publ., Warszawa, 1975. 
  4. [B2] K. Borsuk, Theory of Shape, Lecture Notes Ser. 28, Aarhus Univ., 1971. 
  5. [B3] K. Borsuk, On several problems of theory of shape, in: Studies in Topology, Academic Press, 1975, 67-79. 
  6. [BO] K. Borsuk and J. Olędzki, Remark on the shape domination, Bull. Acad. Polon. Sci. 28 (1980), 67-70. Zbl0464.54039
  7. [Du] M. Dunwoody, The homotopy type of a two-dimensional complex, Bull. London Math. Soc. 8 (1976), 282-285. Zbl0341.55008
  8. [DKN] J. Dydak, A. Kadlof and S. Nowak, Open problems in shape theory, manuscript, 1981. 
  9. [Dy] M. N. Dyer, Trees of homotopy types of (π,m)-complexes, in: Homological Group Theory, London Math. Soc. Lecture Note Ser. 36, Cambridge Univ. Press, 1979, 251-254. 
  10. [FF] A. G. Fomenko, D. B. Fuks and V. L. Gutenmacher, Homotopic Topology, Akadémiai Kiadó, Budapest, 1986. 
  11. [HH] H. M. Hastings and A. Heller, Splitting homotopy idempotents, in: Shape Theory and Geometric Topology, Proc. Dubrovnik, 1981, Lecture Notes in Math. 870, Springer, 1981, 25-36. 
  12. [Kd] A. Kadlof, Concerning the ordering shape property, Bull. Acad. Polon. Sci. 24 (1976), 1103-1108. Zbl0343.55013
  13. [K] D. Kołodziejczyk, Complexes dominated by polyhedra with some algebraic properties, preprint. 
  14. [K1] D. Kołodziejczyk, On some problems of K. Borsuk concerning shape dominations, in: Baku International Topological Conf. Proc., Acad. Sci. USSR, Elm, Baku, 1987, 243-246. Zbl0834.55009
  15. [Lu] M. Lustig, Infinitely many pairwise homotopy inequivalent 2-complexes K i with fixed π 1 ( K i ) and χ ( K i ) , J. Pure Appl. Algebra 88 (1993), 173-175. 
  16. [M] M. Mather, Computing homotopy types of manifolds, Topology 4 (1965), 93-94. Zbl0134.42702
  17. [MP] J. McCool and A. Pietrowski, On free products with amalgamation of two infinite cyclic groups, J. Algebra 18 (1971), 377-383. Zbl0232.20054
  18. [Tr] S. Trybulec, On shapes of movable curves, Bull. Acad. Polon. Sci. 21 (1973), 727-733. Zbl0267.55016
  19. [Wa] C. T. C. Wall, Finiteness conditions for CW-complexes, Ann. of Math. 81 (1965), 56-69. Zbl0152.21902
  20. [We] J. E. West, Mapping Hilbert cube manifolds to ANR's. A solution of a conjecture of Borsuk, Ann. of Math. 106 (1977), 1-18. Zbl0375.57013
  21. [Wh1] J. H. C. Whitehead, Combinatorial homotopy I, II, Bull. Amer. Math. Soc. 55 (1949), 213-245, 453-496. 
  22. [Wh2] J. H. C. Whitehead, Simple homotopy types, Amer. J. Math. 72 (1952), 1-57. 

NotesEmbed ?


You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.


Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.