Combinatorics of open covers (III): games, Cp (X)

Marion Scheepers

Fundamenta Mathematicae (1997)

  • Volume: 152, Issue: 3, page 231-254
  • ISSN: 0016-2736

Abstract

top
Some of the covering properties of spaces as defined in Parts I and II are here characterized by games. These results, applied to function spaces C p ( X ) of countable tightness, give new characterizations of countable fan tightness and countable strong fan tightness. In particular, each of these properties is characterized by a Ramseyan theorem.

How to cite

top

Scheepers, Marion. "Combinatorics of open covers (III): games, Cp (X)." Fundamenta Mathematicae 152.3 (1997): 231-254. <http://eudml.org/doc/212209>.

@article{Scheepers1997,
abstract = {Some of the covering properties of spaces as defined in Parts I and II are here characterized by games. These results, applied to function spaces $C_p(X)$ of countable tightness, give new characterizations of countable fan tightness and countable strong fan tightness. In particular, each of these properties is characterized by a Ramseyan theorem.},
author = {Scheepers, Marion},
journal = {Fundamenta Mathematicae},
keywords = {Rothberger property; Menger property; ω-cover; $S_1(Ω, Ω)$; $S_\{fin\}(Ω, Ω)$; $C_p(X)$; countable fan tightness; countable strong fan tightness; infinite games; covering properties of spaces; countable tightness; Ramseyan theorem},
language = {eng},
number = {3},
pages = {231-254},
title = {Combinatorics of open covers (III): games, Cp (X)},
url = {http://eudml.org/doc/212209},
volume = {152},
year = {1997},
}

TY - JOUR
AU - Scheepers, Marion
TI - Combinatorics of open covers (III): games, Cp (X)
JO - Fundamenta Mathematicae
PY - 1997
VL - 152
IS - 3
SP - 231
EP - 254
AB - Some of the covering properties of spaces as defined in Parts I and II are here characterized by games. These results, applied to function spaces $C_p(X)$ of countable tightness, give new characterizations of countable fan tightness and countable strong fan tightness. In particular, each of these properties is characterized by a Ramseyan theorem.
LA - eng
KW - Rothberger property; Menger property; ω-cover; $S_1(Ω, Ω)$; $S_{fin}(Ω, Ω)$; $C_p(X)$; countable fan tightness; countable strong fan tightness; infinite games; covering properties of spaces; countable tightness; Ramseyan theorem
UR - http://eudml.org/doc/212209
ER -

References

top
  1. [1] A. V. Arkhangel'skiĭ, Hurewicz spaces, analytic sets and fan tightness of function spaces, Soviet Math. Dokl. 33 (1986), 396-399. Zbl0606.54013
  2. [2] A. V. Arkhangel'skiĭ, Topological Function Spaces, Kluwer, 1992. 
  3. [3] J. E. Baumgartner and A. D. Taylor, Partition theorems and ultrafilters, Trans. Amer. Math. Soc. 241 (1978), 283-309. Zbl0386.03024
  4. [4] A. Blass, Ultrafilter mappings and their Dedekind cuts, Trans. Amer. Math. Soc. 188 (1974), 327-340. Zbl0305.02065
  5. [5] D. Booth, Ultrafilters on a countable set, Ann. Math. Logic 2 (1970-71), 1-24. Zbl0231.02067
  6. [6] P. Erdős, A. Hajnal and R. Rado, Partition relations for cardinal numbers, Acta Math. Acad. Sci. Hungar. 16 (1965), 93-196. Zbl0158.26603
  7. [7]G F. Galvin, Indeterminacy of point-open games, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 26 (1978), 445-448. Zbl0392.90101
  8. [8] J. Gerlits and Zs. Nagy, Some properties of C(X) I, Topology Appl. 14 (1982), 151-161. 
  9. [9] S. Grigorieff, Combinatorics on ideals and forcing, Ann. Math. Logic 3 (1971), 363-394. Zbl0328.02041
  10. [10]H W. Hurewicz, Über eine Verallgemeinerung des Borelschen Theorems, Math. Z. 24 (1925), 401-421. Zbl51.0454.02
  11. [11] W. Just, A. W. Miller, M. Scheepers and P. J. Szeptycki, The combinatorics of open covers II, Topology Appl. 73 (1996), 241-266. Zbl0870.03021
  12. [12] J. Ketonen, On the existence of P-points, Fund. Math. 92 (1976), 91-94. Zbl0339.54035
  13. [13] K. Kunen, Some points in βN, Math. Proc. Cambridge Philos. Soc. 80 (1976), 385-398. Zbl0345.02047
  14. [14] C. Laflamme, Filter games and combinatorial properties of strategies, in: Contemp. Math. 192, Amer. Math. Soc., 1996, 51-67. Zbl0854.04004
  15. [15] A. R. D. Mathias, Happy families, Ann. Math. Logic 12 (1977), 59-111. 
  16. [16] K. Menger, Einige Überdeckungssätze der Punktmengenlehre, Sitzungsber. Wien Abt. 2a Math. Astronom. Phys. Meteorol. Mech. 133 (1924), 421-444. Zbl50.0129.01
  17. [17]P J. Pawlikowski, Undetermined sets of point-open games, Fund. Math. 144 (1994), 279-285. Zbl0853.54033
  18. [18] F. Rothberger, Eine Verschärfung der Eigenschaft C, Fund. Math. 30 (1938), 50-55. Zbl64.0622.01
  19. [19] M. Sakai, Property C'' and function spaces, Proc. Amer. Math. Soc. 104 (1988), 917-919. Zbl0691.54007
  20. [20] M. Scheepers, Combinatorics of open covers I: Ramsey theory, Topology Appl. 69 (1996), 31-62. Zbl0848.54018
  21. [21] M. Scheepers, Open covers and the square bracket partition relation, Proc. Amer. Math. Soc., to appear. Zbl0884.03048
  22. [22] S. Shelah, Proper Forcing, Springer, 1982. 
  23. [23] R. Telgársky, On games of Topsœ, Math. Scand. 54 (1984), 170-176. Zbl0525.54016

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.