Ordinary differential equations and descriptive set theory: uniqueness and globality of solutions of Cauchy problems in one dimension
Alessandro Andretta; Alberto Marcone
Fundamenta Mathematicae (1997)
- Volume: 153, Issue: 2, page 157-190
- ISSN: 0016-2736
Access Full Article
topAbstract
topHow to cite
topReferences
top- [1] H. Becker, Descriptive set theoretic phenomena in analysis and topology, in: Set Theory of the Continuum, H. Judah, W. Just and H. Woodin (eds.), Math. Sci. Res. Inst. Publ. 26, Springer, 1992, 1-25. Zbl0786.04001
- [2] G. Beer, Topologies on Closed and Closed Convex Sets, Kluwer, 1993.
- [3] L. Faina, Uniqueness and continuous dependence of the solutions for functional differential equations as a generic property, Nonlinear Anal. 23 (1994) 745-754. Zbl0810.34062
- [4] A. Kanamori, The emergence of descriptive set theory, in: Essays on the Development of the Foundations of Mathematics, J. Hintikka (ed.), Kluwer, 1995, 241-262.
- [5] A. S. Kechris, Classical Descriptive Set Theory, Springer, 1995.
- [6] A. Lasota and J. A. Yorke, The generic property of existence of solutions of differential equations in Banach space, J. Differential Equations 13 (1973), 1-12. Zbl0259.34070
- [7] Y. N. Moschovakis, Descriptive Set Theory, North-Holland, 1980.
- [8] W. Orlicz, Zur Theorie der Differentialgleichung y' = f(x,y), Bull. Internat. Acad. Polon. Sci. Lettres Sér. A Sci. Math. 1932, 221-228. Zbl0006.30401
- [9] S. G. Simpson, Which set existence axioms are needed to prove the Cauchy/Peano theorem for ordinary differential equations?, J. Symbolic Logic 49 (1984), 783-802. Zbl0584.03039