Are initially -compact separable regular spaces compact?
Fundamenta Mathematicae (1997)
- Volume: 154, Issue: 2, page 123-132
- ISSN: 0016-2736
Access Full Article
topAbstract
topHow to cite
topReferences
top- [1] B. Balcar and P. Simon, On minimal π-character of points in extremally disconnected compact spaces, Topology Appl. 41 (1991), 133-145. Zbl0752.54013
- [2] Z. Balogh, A. Dow, D. Fremlin, and P. Nyikos, Countable tightness and proper forcing, Bull. Amer. Math. Soc. 19 (1988), 295-298. Zbl0661.54007
- [3] M. Bell and K. Kunen, On the π-character of ultrafilters, C. R. Math. Rep. Acad. Sci. Canada 3 (1981), 351-356. Zbl0475.54001
- [4] A. Dow, Compact spaces of countable tightness in the Cohen model, in: J. Steprāns and S. Watson (eds.), Set Theory and its Applications, Lecture Notes in Math. 1401, Springer, 1989, 55-67. Zbl0684.54003
- [5] A. Dow, I. Juhász, L. Soukoup and Z. Szentmiklossy, More on sequentially compact implying pseudoradial, Topology Appl. 73 (1996), 191-195. Zbl0859.54002
- [6] A. Hajnal and I. Juhász, On hereditarily α-Lindelöf and α-separable spaces, II, Fund. Math. 81 (1974), 147-158.
- [7] I. Juhász, Cardinal functions II, in: K. Kunen and J. E. Vaughan (eds.), Handbook of Set-Theoretic Topology, North-Holland, 1984, 63-109.
- [8] P. Koszmider, Splitting ultrafilters of the thin-very tall algebra and initially -compactness, preprint.
- [9] K. Kunen, Weak P-points in N*, in: Colloq. Math. Soc. János Bolyai, 23, North-Holland, 1980, 741-749.
- [10] M. Rabus, An -minimal Boolean algebra, Trans. Amer. Math. Soc. 348 (1996), 3235-3244. Zbl0859.03026
- [11] M. Rajagopalan, A chain compact space which is not strongly scattered, Israel J. Math. 23 (1976), 117-125. Zbl0331.54012
- [12] P. Simon, Divergent sequences in bicompacta, Soviet Math. Dokl. 243 (1978), 1573-1577. Zbl0415.54004
- [13] E. K. van Douwen, The integers and topology, in: K. Kunen and J. E. Vaughan (eds.), Handbook of Set-Theoretic Topology, North-Holland, 1984, 111-168. Zbl0561.54004
- [14] J. Vaughan, Countably compact and sequentially compact spaces, in: K. Kunen and J. E. Vaughan (eds.), Handbook of Set-Theoretic Topology, North-Holland, 1984, 569-601.