Are initially ω 1 -compact separable regular spaces compact?

Alan Dow; Istvan Juhász

Fundamenta Mathematicae (1997)

  • Volume: 154, Issue: 2, page 123-132
  • ISSN: 0016-2736

Abstract

top
We investigate the question of the title. While it is immediate that CH yields a positive answer we discover that the situation under the negation of CH holds some surprises.

How to cite

top

Dow, Alan, and Juhász, Istvan. "Are initially $ω_1$ -compact separable regular spaces compact?." Fundamenta Mathematicae 154.2 (1997): 123-132. <http://eudml.org/doc/212229>.

@article{Dow1997,
abstract = {We investigate the question of the title. While it is immediate that CH yields a positive answer we discover that the situation under the negation of CH holds some surprises.},
author = {Dow, Alan, Juhász, Istvan},
journal = {Fundamenta Mathematicae},
keywords = {regular; separable; initially -compact; Cohen reals},
language = {eng},
number = {2},
pages = {123-132},
title = {Are initially $ω_1$ -compact separable regular spaces compact?},
url = {http://eudml.org/doc/212229},
volume = {154},
year = {1997},
}

TY - JOUR
AU - Dow, Alan
AU - Juhász, Istvan
TI - Are initially $ω_1$ -compact separable regular spaces compact?
JO - Fundamenta Mathematicae
PY - 1997
VL - 154
IS - 2
SP - 123
EP - 132
AB - We investigate the question of the title. While it is immediate that CH yields a positive answer we discover that the situation under the negation of CH holds some surprises.
LA - eng
KW - regular; separable; initially -compact; Cohen reals
UR - http://eudml.org/doc/212229
ER -

References

top
  1. [1] B. Balcar and P. Simon, On minimal π-character of points in extremally disconnected compact spaces, Topology Appl. 41 (1991), 133-145. Zbl0752.54013
  2. [2] Z. Balogh, A. Dow, D. Fremlin, and P. Nyikos, Countable tightness and proper forcing, Bull. Amer. Math. Soc. 19 (1988), 295-298. Zbl0661.54007
  3. [3] M. Bell and K. Kunen, On the π-character of ultrafilters, C. R. Math. Rep. Acad. Sci. Canada 3 (1981), 351-356. Zbl0475.54001
  4. [4] A. Dow, Compact spaces of countable tightness in the Cohen model, in: J. Steprāns and S. Watson (eds.), Set Theory and its Applications, Lecture Notes in Math. 1401, Springer, 1989, 55-67. Zbl0684.54003
  5. [5] A. Dow, I. Juhász, L. Soukoup and Z. Szentmiklossy, More on sequentially compact implying pseudoradial, Topology Appl. 73 (1996), 191-195. Zbl0859.54002
  6. [6] A. Hajnal and I. Juhász, On hereditarily α-Lindelöf and α-separable spaces, II, Fund. Math. 81 (1974), 147-158. 
  7. [7] I. Juhász, Cardinal functions II, in: K. Kunen and J. E. Vaughan (eds.), Handbook of Set-Theoretic Topology, North-Holland, 1984, 63-109. 
  8. [8] P. Koszmider, Splitting ultrafilters of the thin-very tall algebra and initially ω 1 -compactness, preprint. 
  9. [9] K. Kunen, Weak P-points in N*, in: Colloq. Math. Soc. János Bolyai, 23, North-Holland, 1980, 741-749. 
  10. [10] M. Rabus, An ω 2 -minimal Boolean algebra, Trans. Amer. Math. Soc. 348 (1996), 3235-3244. Zbl0859.03026
  11. [11] M. Rajagopalan, A chain compact space which is not strongly scattered, Israel J. Math. 23 (1976), 117-125. Zbl0331.54012
  12. [12] P. Simon, Divergent sequences in bicompacta, Soviet Math. Dokl. 243 (1978), 1573-1577. Zbl0415.54004
  13. [13] E. K. van Douwen, The integers and topology, in: K. Kunen and J. E. Vaughan (eds.), Handbook of Set-Theoretic Topology, North-Holland, 1984, 111-168. Zbl0561.54004
  14. [14] J. Vaughan, Countably compact and sequentially compact spaces, in: K. Kunen and J. E. Vaughan (eds.), Handbook of Set-Theoretic Topology, North-Holland, 1984, 569-601. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.