Borel extensions of Baire measures

J. Aldaz

Fundamenta Mathematicae (1997)

  • Volume: 154, Issue: 3, page 275-293
  • ISSN: 0016-2736

Abstract

top
We show that in a countably metacompact space, if a Baire measure admits a Borel extension, then it admits a regular Borel extension. We also prove that under the special axiom ♣ there is a Dowker space which is quasi-Mařík but not Mařík, answering a question of H. Ohta and K. Tamano, and under P(c), that there is a Mařík Dowker space, answering a question of W. Adamski. We answer further questions of H. Ohta and K. Tamano by showing that the union of a Mařík space and a compact space is Mařík, that under "c is real-valued measurable", a Baire subset of a Mařík space need not be Mařík, and finally, that the preimage of a Mařík space under an open perfect map is Mařík.

How to cite

top

Aldaz, J.. "Borel extensions of Baire measures." Fundamenta Mathematicae 154.3 (1997): 275-293. <http://eudml.org/doc/212238>.

@article{Aldaz1997,
abstract = {We show that in a countably metacompact space, if a Baire measure admits a Borel extension, then it admits a regular Borel extension. We also prove that under the special axiom ♣ there is a Dowker space which is quasi-Mařík but not Mařík, answering a question of H. Ohta and K. Tamano, and under P(c), that there is a Mařík Dowker space, answering a question of W. Adamski. We answer further questions of H. Ohta and K. Tamano by showing that the union of a Mařík space and a compact space is Mařík, that under "c is real-valued measurable", a Baire subset of a Mařík space need not be Mařík, and finally, that the preimage of a Mařík space under an open perfect map is Mařík.},
author = {Aldaz, J.},
journal = {Fundamenta Mathematicae},
keywords = {Mařík; quasi-Mařík; countably metacompact; Dowker; Baire measure; extension; metacompact space; Borel measure; Dowker space; Dowker-Mařík space},
language = {eng},
number = {3},
pages = {275-293},
title = {Borel extensions of Baire measures},
url = {http://eudml.org/doc/212238},
volume = {154},
year = {1997},
}

TY - JOUR
AU - Aldaz, J.
TI - Borel extensions of Baire measures
JO - Fundamenta Mathematicae
PY - 1997
VL - 154
IS - 3
SP - 275
EP - 293
AB - We show that in a countably metacompact space, if a Baire measure admits a Borel extension, then it admits a regular Borel extension. We also prove that under the special axiom ♣ there is a Dowker space which is quasi-Mařík but not Mařík, answering a question of H. Ohta and K. Tamano, and under P(c), that there is a Mařík Dowker space, answering a question of W. Adamski. We answer further questions of H. Ohta and K. Tamano by showing that the union of a Mařík space and a compact space is Mařík, that under "c is real-valued measurable", a Baire subset of a Mařík space need not be Mařík, and finally, that the preimage of a Mařík space under an open perfect map is Mařík.
LA - eng
KW - Mařík; quasi-Mařík; countably metacompact; Dowker; Baire measure; extension; metacompact space; Borel measure; Dowker space; Dowker-Mařík space
UR - http://eudml.org/doc/212238
ER -

References

top
  1. [Ad1] W. Adamski, On regular extensions of contents and measures, J. Math. Anal. Appl. 127 (1987), 211-225. Zbl0644.28002
  2. [Ad2] W. Adamski, On the interplay between a topology and its associated Baire and Borel σ-algebra, Period. Math. Hungar. 21 (2) (1987), 85-93. 
  3. [Ad3] W. Adamski, τ-smooth Borel measures on topological spaces, Math. Nachr. 78 (1977), 97-107. 
  4. [Ba] W. Bade, Two properties of the Sorgenfrey plane, Pacific J. Math. 51 (1974), 349-354. Zbl0308.54031
  5. [Be] M. G. Bell, On the combinatorial principle P(c), Fund. Math. 114 (1981), 149-157. Zbl0581.03038
  6. [BB] K. P. S. Bhaskara Rao and M. Bhaskara Rao, Theory of Charges, Academic Press, 1983. Zbl0516.28001
  7. [vD] E. K. van Douwen, Covering and separation properties of box products, in: Surveys in General Topology, G. M. Reed (ed.), Academic Press, 1980, 55-129. Zbl0453.54005
  8. [Do] C. H. Dowker, On countably paracompact spaces, Canad. J. Math. 3 (1951), 219-224. Zbl0042.41007
  9. [Eng] R. Engelking, General Topology, Heldermann, Berlin, 1989. 
  10. [F1] D. H. Fremlin, Consequences of Martin's Axiom, Cambridge Univ. Press, 1984. Zbl0551.03033
  11. [F2] D. H. Fremlin, Real-valued-measurable cardinals, in: Set Theory of the Reals, H. Judah (ed.), Israel Math. Conf. Proc. 6, Bar-Ilan Univ., Ramat Gan, 1993, 151-304. 
  12. [F3] D. H. Fremlin, Uncountable powers of ℝ can be almost Lindelöf, Manuscripta Math. 22 (1977), 77-85. Zbl0396.54015
  13. [Fro] Z. Frolík, Applications of complete families of continuous functions to the theory of Q-spaces, Czechoslovak Math. J. 11 (1961), 115-133. 
  14. [GJ] L. Gillman and M. Jerison, Rings of Continuous Functions, Van Nostrand, Princeton, N.J., 1989. 
  15. [Grz] E. Grzegorek, Solution of a problem of Banach on σ-fields without continuous measures, Bull. Acad. Polon. Sci. Sér. Sci. Math. 28 (1980), 7-10. Zbl0483.28003
  16. [HRR] A. W. Hager, G. D. Reynolds and M. D. Rice, Borel-complete topological spaces, Fund. Math. 75 (1972), 135-143. Zbl0208.25101
  17. [Ish] F. Ishikawa, On countably paracompact spaces, Proc. Japan Acad. 31 (1955), 686-687. Zbl0066.41001
  18. [Ka] A. Kato, Union of realcompact spaces and Lindelöf spaces, Canad. J. Math. 31 (1979), 1247-1268. Zbl0453.54015
  19. [Ki] R. B. Kirk, Locally compact, B-compact spaces, Indag. Math. 31 (1969), 333-344. Zbl0188.28003
  20. [Kn] J. D. Knowles, Measures on topological spaces, Proc. London Math. Soc. (3) 17 (1967), 139-156. 
  21. [Ku] K. Kunen, Inaccessibility properties of cardinals, Ph.D. thesis, Stanford Univ., 1968. 
  22. [Lem] J. Lembcke, Konservative Abbildungen und Fortsetzung regulärer Masse, Z. Wahrsch. Verw. Gebiete 15 (1970), 57-96. 
  23. [Ma] J. Mařík, The Baire and Borel measure, Czechoslovak Math. J. 7 (1957), 248-253. Zbl0091.05501
  24. [Mo] W. Moran, The additivity of measures on completely regular spaces, J. London Math. Soc. 43 (1968), 633-639. Zbl0159.07802
  25. [Na] K. Nagami, Countable paracompactness of inverse limits and products, Fund. Math. 73 (1972), 261-270. Zbl0226.54005
  26. [OT] H. Ohta and K. Tamano, Topological spaces whose Baire measure admits a regular Borel extension, Trans. Amer. Math. Soc. 317 (1990), 393-415. Zbl0691.54009
  27. [Ost] A. J. Ostaszewski, On countably compact, perfectly normal spaces, J. London Math. Soc. (2) 14 (1976), 505-516. Zbl0348.54014
  28. [Ox] J. C. Oxtoby, Homeomorphic measures in metric spaces, Proc. Amer. Math. Soc. 24 (1970), 419-423. Zbl0187.00902
  29. [Pa] J. K. Pachl, Disintegration and compact measures, Math. Scand. 43 (1978), 157-168. Zbl0402.28006
  30. [Ru1] M. E. Rudin, Dowker spaces, in: Handbook of Set-Theoretic Topology, K. Kunen and J. E. Vaughan (eds.), North-Holland, 1984, 761-780. 
  31. [Ru2] M. E. Rudin, A normal space X for which X × I is not normal, Fund. Math. 73 (1971), 179-186. Zbl0224.54019
  32. [S] B. M. Scott, Some "almost-Dowker" spaces, Proc. Amer. Math. Soc. 68 (1978), 359-364. Zbl0378.54011
  33. [SS] L. A. Steen and J. A. Seebach, Counterexamples in Topology, Springer, 1986. Zbl0211.54401
  34. [St] A. H. Stone, Paracompactness and product spaces, Bull. Amer. Math. Soc. 58 (1948), 977-982. Zbl0032.31403
  35. [Sz] P. J. Szeptycki, Dowker spaces, in: Topology Atlas 1, D. Shakhmatov and S. Watson (eds.), electronic publication, 1996, 45-47. 
  36. [T] F. Topsœ, On construction of measures, in: Proc. Conf. "Topology and Measure I" (Zinnowitz 1974), Part 2, J. Flachsmeyer, Z. Frolík and F. Terpe (eds.), Ernst-Moritz-Arndt Univ., Greifswald, 1978, 343-381. 
  37. [U] S. Ulam, Zur Masstheorie in der allgemeinen Mengenlehre, Fund. Math. 16 (1930), 140-150. Zbl56.0920.04
  38. [W] W. Weiss, Versions of Martin's axiom, in: Handbook of Set-Theoretic Topology, K. Kunen and J. E. Vaughan (eds.), North-Holland, 1984, 827-886. 
  39. [Wh1] R. F. Wheeler, A survey of Baire measures and strict topologies, Exposition. Math. 77 (1983), 97-190. Zbl0522.28009
  40. [Wh2] R. F. Wheeler, Extensions of a σ-additive measure to the projective cover, in: Lecture Notes in Math. 794, Springer, 1980, 81-104. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.