Modules commuting (via Hom) with some limits
Fundamenta Mathematicae (1998)
- Volume: 155, Issue: 3, page 271-292
- ISSN: 0016-2736
Access Full Article
topAbstract
topHow to cite
topEl Bashir, Robert, and Kepka, Tomáš. "Modules commuting (via Hom) with some limits." Fundamenta Mathematicae 155.3 (1998): 271-292. <http://eudml.org/doc/212256>.
@article{ElBashir1998,
abstract = {For every module M we have a natural monomorphism
$Φ: ∐_\{i ∈ I\} Hom _R (A_i,M) → Hom _R (∏_\{i ∈I\} A_i, M)$
and we focus attention on the case when Φ is also an epimorphism. The corresponding modules M depend on thickness of the cardinal number card(I). Some other limits are also considered.},
author = {El Bashir, Robert, Kepka, Tomáš},
journal = {Fundamenta Mathematicae},
keywords = {slender modules; -slim modules; -slender modules; approximation property; pull-backs; -slim homomorphisms; direct products; direct sums},
language = {eng},
number = {3},
pages = {271-292},
title = {Modules commuting (via Hom) with some limits},
url = {http://eudml.org/doc/212256},
volume = {155},
year = {1998},
}
TY - JOUR
AU - El Bashir, Robert
AU - Kepka, Tomáš
TI - Modules commuting (via Hom) with some limits
JO - Fundamenta Mathematicae
PY - 1998
VL - 155
IS - 3
SP - 271
EP - 292
AB - For every module M we have a natural monomorphism
$Φ: ∐_{i ∈ I} Hom _R (A_i,M) → Hom _R (∏_{i ∈I} A_i, M)$
and we focus attention on the case when Φ is also an epimorphism. The corresponding modules M depend on thickness of the cardinal number card(I). Some other limits are also considered.
LA - eng
KW - slender modules; -slim modules; -slender modules; approximation property; pull-backs; -slim homomorphisms; direct products; direct sums
UR - http://eudml.org/doc/212256
ER -
References
top- [1] D. Allouch, Modules maigres, thèse, Montpellier, 1969/70.
- [2] L. Bican, J. Jirásko, T. Kepka and B. Torrecillas, Modules and their extensions I. (Purities), Publ. Dept. Math. M93001 (1993), Faculty of Civil Engin., Czech Techn. Univ., Prague.
- [3] R. Dimitrić, Slender modules over domains, Comm. Algebra 11 (1983), 1685-1700. Zbl0578.13010
- [4] R. Dimitrić, Slenderness in abelian categories, in: Abelian Group Theory, Lecture Notes in Math. 1006, Springer, 1983, 375-383. Zbl0517.18013
- [5] K. Eda, A Boolean power and a direct product of abelian groups, Tsukuba J. Math. 6 (1982), 187-193. Zbl0533.20026
- [6] K. Eda, On a Boolean power of a torsion free Abelian group, J. Algebra 82 (1983), 84-93. Zbl0538.20027
- [7] K. Eda, Slender modules, endo-slender abelian groups and large cardinals, Fund. Math. 135 (1990), 5-24. Zbl0752.16014
- [8] A. Ehrenfeucht and J. Łoś, Sur les produits cartésiens des groupes cycliques infinies, Bull. Acad. Polon. Sci. Sér. Astronom. Phys. Sci. Math. 2 (1954), 261-263. Zbl0055.25304
- [9] P. Eklof and A. Mekkler, Almost Free Modules, North-Holland, 1990.
- [10] R. El Bashir and T. Kepka, On when small semiprime rings are slender, Comm. Algebra 24 (1996), 1575-1580. Zbl0854.16015
- [11] R. El Bashir and T. Kepka, Notes on slender prime rings, Comment. Math. Univ. Carolin. 37 (1996), 419-422. Zbl0854.16016
- [12] R. El Bashir, T. Kepka and P. Němec, Modules commuting (via Hom) with some colimits, preprint. Zbl1080.16504
- [13] L. Fuchs, Abelian Groups, Pergamon Press, 1960. Zbl0100.02803
- [14] L. Fuchs, Infinite Abelian Groups, Vol. I, Academic Press, 1970. Zbl0209.05503
- [15] L. Fuchs, Infinite Abelian Groups, Vol. II, Academic Press, 1973. Zbl0257.20035
- [16] L. Fuchs and L. Salce, Modules over Valuation Domains, M. Dekker, 1985. Zbl0578.13004
- [17] G. Heinlein, Vollreflexive Ringe und schlanke Moduln, Dissertation, Erlangen, 1971.
- [18] L. Henkin, A problem on inverse mapping systems, Proc. Amer. Math. Soc. 1 (1950), 224-225. Zbl0041.52204
- [19] A. Kanamori, The Higher Infinite, Springer, 1994. Zbl0813.03034
- [20] S. Koppelberg, Handbook of Boolean Algebras, Vol. I, North-Holland, 1989. Zbl0676.06019
- [21] E. Lady, Slender rings and modules, Pacific J. Math. 49 (1973), 397-406. Zbl0274.16015
- [22] A. Mader, Groups and modules that are slender as modules over their endomorphism rings, in: Abelian Groups and Modules, CISM Courses and Lectures 287, Springer, 1984, 315-327.
- [23] G. de Marco and A. Orsatti, Complete linear topologies on abelian groups, Sympos. Math. 13 (1974), 153-161. Zbl0303.20038
- [24] R. Nunke, Slender groups, Acta Sci. Math. (Szeged) 23 (1962), 67-73. Zbl0108.02601
- [25] A. Pultr and V. Trnková, Combinatorial, Algebraic and Topological Representations of Groups, Semigroups and Categories, North-Holland, 1980.
- [26] L. Salce, Moduli slender su anelli di Dedekind, Ann. Univ. Ferrara Sez. VII Sci. Math. 20 (1975), 59-63.
- [27] E. Sąsiada, Proof that every countable and reduced torsion-free abelian group is slender, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 7 (1959), 143-144. Zbl0085.01702
- [28] J. Trlifaj, Similarities and differences between abelian groups and modules over non-perfect rings, in: Contemp. Math. 171 Amer. Math. Soc., 1994, 397-406. Zbl0823.20060
- [29] R. Wisbauer, Grundlagen der Modul und Ringtheorie, R. Fisher, 1988.
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.