Modules commuting (via Hom) with some limits

Robert El Bashir; Tomáš Kepka

Fundamenta Mathematicae (1998)

  • Volume: 155, Issue: 3, page 271-292
  • ISSN: 0016-2736

Abstract

top
For every module M we have a natural monomorphism   Φ : i I H o m R ( A i , M ) H o m R ( i I A i , M ) and we focus attention on the case when Φ is also an epimorphism. The corresponding modules M depend on thickness of the cardinal number card(I). Some other limits are also considered.

How to cite

top

El Bashir, Robert, and Kepka, Tomáš. "Modules commuting (via Hom) with some limits." Fundamenta Mathematicae 155.3 (1998): 271-292. <http://eudml.org/doc/212256>.

@article{ElBashir1998,
abstract = {For every module M we have a natural monomorphism  $Φ: ∐_\{i ∈ I\} Hom _R (A_i,M) → Hom _R (∏_\{i ∈I\} A_i, M)$ and we focus attention on the case when Φ is also an epimorphism. The corresponding modules M depend on thickness of the cardinal number card(I). Some other limits are also considered.},
author = {El Bashir, Robert, Kepka, Tomáš},
journal = {Fundamenta Mathematicae},
keywords = {slender modules; -slim modules; -slender modules; approximation property; pull-backs; -slim homomorphisms; direct products; direct sums},
language = {eng},
number = {3},
pages = {271-292},
title = {Modules commuting (via Hom) with some limits},
url = {http://eudml.org/doc/212256},
volume = {155},
year = {1998},
}

TY - JOUR
AU - El Bashir, Robert
AU - Kepka, Tomáš
TI - Modules commuting (via Hom) with some limits
JO - Fundamenta Mathematicae
PY - 1998
VL - 155
IS - 3
SP - 271
EP - 292
AB - For every module M we have a natural monomorphism  $Φ: ∐_{i ∈ I} Hom _R (A_i,M) → Hom _R (∏_{i ∈I} A_i, M)$ and we focus attention on the case when Φ is also an epimorphism. The corresponding modules M depend on thickness of the cardinal number card(I). Some other limits are also considered.
LA - eng
KW - slender modules; -slim modules; -slender modules; approximation property; pull-backs; -slim homomorphisms; direct products; direct sums
UR - http://eudml.org/doc/212256
ER -

References

top
  1. [1] D. Allouch, Modules maigres, thèse, Montpellier, 1969/70. 
  2. [2] L. Bican, J. Jirásko, T. Kepka and B. Torrecillas, Modules and their extensions I. (Purities), Publ. Dept. Math. M93001 (1993), Faculty of Civil Engin., Czech Techn. Univ., Prague. 
  3. [3] R. Dimitrić, Slender modules over domains, Comm. Algebra 11 (1983), 1685-1700. Zbl0578.13010
  4. [4] R. Dimitrić, Slenderness in abelian categories, in: Abelian Group Theory, Lecture Notes in Math. 1006, Springer, 1983, 375-383. Zbl0517.18013
  5. [5] K. Eda, A Boolean power and a direct product of abelian groups, Tsukuba J. Math. 6 (1982), 187-193. Zbl0533.20026
  6. [6] K. Eda, On a Boolean power of a torsion free Abelian group, J. Algebra 82 (1983), 84-93. Zbl0538.20027
  7. [7] K. Eda, Slender modules, endo-slender abelian groups and large cardinals, Fund. Math. 135 (1990), 5-24. Zbl0752.16014
  8. [8] A. Ehrenfeucht and J. Łoś, Sur les produits cartésiens des groupes cycliques infinies, Bull. Acad. Polon. Sci. Sér. Astronom. Phys. Sci. Math. 2 (1954), 261-263. Zbl0055.25304
  9. [9] P. Eklof and A. Mekkler, Almost Free Modules, North-Holland, 1990. 
  10. [10] R. El Bashir and T. Kepka, On when small semiprime rings are slender, Comm. Algebra 24 (1996), 1575-1580. Zbl0854.16015
  11. [11] R. El Bashir and T. Kepka, Notes on slender prime rings, Comment. Math. Univ. Carolin. 37 (1996), 419-422. Zbl0854.16016
  12. [12] R. El Bashir, T. Kepka and P. Němec, Modules commuting (via Hom) with some colimits, preprint. Zbl1080.16504
  13. [13] L. Fuchs, Abelian Groups, Pergamon Press, 1960. Zbl0100.02803
  14. [14] L. Fuchs, Infinite Abelian Groups, Vol. I, Academic Press, 1970. Zbl0209.05503
  15. [15] L. Fuchs, Infinite Abelian Groups, Vol. II, Academic Press, 1973. Zbl0257.20035
  16. [16] L. Fuchs and L. Salce, Modules over Valuation Domains, M. Dekker, 1985. Zbl0578.13004
  17. [17] G. Heinlein, Vollreflexive Ringe und schlanke Moduln, Dissertation, Erlangen, 1971. 
  18. [18] L. Henkin, A problem on inverse mapping systems, Proc. Amer. Math. Soc. 1 (1950), 224-225. Zbl0041.52204
  19. [19] A. Kanamori, The Higher Infinite, Springer, 1994. Zbl0813.03034
  20. [20] S. Koppelberg, Handbook of Boolean Algebras, Vol. I, North-Holland, 1989. Zbl0676.06019
  21. [21] E. Lady, Slender rings and modules, Pacific J. Math. 49 (1973), 397-406. Zbl0274.16015
  22. [22] A. Mader, Groups and modules that are slender as modules over their endomorphism rings, in: Abelian Groups and Modules, CISM Courses and Lectures 287, Springer, 1984, 315-327. 
  23. [23] G. de Marco and A. Orsatti, Complete linear topologies on abelian groups, Sympos. Math. 13 (1974), 153-161. Zbl0303.20038
  24. [24] R. Nunke, Slender groups, Acta Sci. Math. (Szeged) 23 (1962), 67-73. Zbl0108.02601
  25. [25] A. Pultr and V. Trnková, Combinatorial, Algebraic and Topological Representations of Groups, Semigroups and Categories, North-Holland, 1980. 
  26. [26] L. Salce, Moduli slender su anelli di Dedekind, Ann. Univ. Ferrara Sez. VII Sci. Math. 20 (1975), 59-63. 
  27. [27] E. Sąsiada, Proof that every countable and reduced torsion-free abelian group is slender, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 7 (1959), 143-144. Zbl0085.01702
  28. [28] J. Trlifaj, Similarities and differences between abelian groups and modules over non-perfect rings, in: Contemp. Math. 171 Amer. Math. Soc., 1994, 397-406. Zbl0823.20060
  29. [29] R. Wisbauer, Grundlagen der Modul und Ringtheorie, R. Fisher, 1988. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.