Modules commuting (via Hom) with some limits
Fundamenta Mathematicae (1998)
- Volume: 155, Issue: 3, page 271-292
 - ISSN: 0016-2736
 
Access Full Article
topAbstract
topHow to cite
topEl Bashir, Robert, and Kepka, Tomáš. "Modules commuting (via Hom) with some limits." Fundamenta Mathematicae 155.3 (1998): 271-292. <http://eudml.org/doc/212256>.
@article{ElBashir1998,
	abstract = {For every module M we have a natural monomorphism
 $Φ: ∐_\{i ∈ I\} Hom _R (A_i,M) → Hom _R (∏_\{i ∈I\} A_i, M)$
and we focus attention on the case when Φ is also an epimorphism. The corresponding modules M depend on thickness of the cardinal number card(I). Some other limits are also considered.},
	author = {El Bashir, Robert, Kepka, Tomáš},
	journal = {Fundamenta Mathematicae},
	keywords = {slender modules; -slim modules; -slender modules; approximation property; pull-backs; -slim homomorphisms; direct products; direct sums},
	language = {eng},
	number = {3},
	pages = {271-292},
	title = {Modules commuting (via Hom) with some limits},
	url = {http://eudml.org/doc/212256},
	volume = {155},
	year = {1998},
}
TY  - JOUR
AU  - El Bashir, Robert
AU  - Kepka, Tomáš
TI  - Modules commuting (via Hom) with some limits
JO  - Fundamenta Mathematicae
PY  - 1998
VL  - 155
IS  - 3
SP  - 271
EP  - 292
AB  - For every module M we have a natural monomorphism
 $Φ: ∐_{i ∈ I} Hom _R (A_i,M) → Hom _R (∏_{i ∈I} A_i, M)$
and we focus attention on the case when Φ is also an epimorphism. The corresponding modules M depend on thickness of the cardinal number card(I). Some other limits are also considered.
LA  - eng
KW  - slender modules; -slim modules; -slender modules; approximation property; pull-backs; -slim homomorphisms; direct products; direct sums
UR  - http://eudml.org/doc/212256
ER  - 
References
top- [1] D. Allouch, Modules maigres, thèse, Montpellier, 1969/70.
 - [2] L. Bican, J. Jirásko, T. Kepka and B. Torrecillas, Modules and their extensions I. (Purities), Publ. Dept. Math. M93001 (1993), Faculty of Civil Engin., Czech Techn. Univ., Prague.
 - [3] R. Dimitrić, Slender modules over domains, Comm. Algebra 11 (1983), 1685-1700. Zbl0578.13010
 - [4] R. Dimitrić, Slenderness in abelian categories, in: Abelian Group Theory, Lecture Notes in Math. 1006, Springer, 1983, 375-383. Zbl0517.18013
 - [5] K. Eda, A Boolean power and a direct product of abelian groups, Tsukuba J. Math. 6 (1982), 187-193. Zbl0533.20026
 - [6] K. Eda, On a Boolean power of a torsion free Abelian group, J. Algebra 82 (1983), 84-93. Zbl0538.20027
 - [7] K. Eda, Slender modules, endo-slender abelian groups and large cardinals, Fund. Math. 135 (1990), 5-24. Zbl0752.16014
 - [8] A. Ehrenfeucht and J. Łoś, Sur les produits cartésiens des groupes cycliques infinies, Bull. Acad. Polon. Sci. Sér. Astronom. Phys. Sci. Math. 2 (1954), 261-263. Zbl0055.25304
 - [9] P. Eklof and A. Mekkler, Almost Free Modules, North-Holland, 1990.
 - [10] R. El Bashir and T. Kepka, On when small semiprime rings are slender, Comm. Algebra 24 (1996), 1575-1580. Zbl0854.16015
 - [11] R. El Bashir and T. Kepka, Notes on slender prime rings, Comment. Math. Univ. Carolin. 37 (1996), 419-422. Zbl0854.16016
 - [12] R. El Bashir, T. Kepka and P. Němec, Modules commuting (via Hom) with some colimits, preprint. Zbl1080.16504
 - [13] L. Fuchs, Abelian Groups, Pergamon Press, 1960. Zbl0100.02803
 - [14] L. Fuchs, Infinite Abelian Groups, Vol. I, Academic Press, 1970. Zbl0209.05503
 - [15] L. Fuchs, Infinite Abelian Groups, Vol. II, Academic Press, 1973. Zbl0257.20035
 - [16] L. Fuchs and L. Salce, Modules over Valuation Domains, M. Dekker, 1985. Zbl0578.13004
 - [17] G. Heinlein, Vollreflexive Ringe und schlanke Moduln, Dissertation, Erlangen, 1971.
 - [18] L. Henkin, A problem on inverse mapping systems, Proc. Amer. Math. Soc. 1 (1950), 224-225. Zbl0041.52204
 - [19] A. Kanamori, The Higher Infinite, Springer, 1994. Zbl0813.03034
 - [20] S. Koppelberg, Handbook of Boolean Algebras, Vol. I, North-Holland, 1989. Zbl0676.06019
 - [21] E. Lady, Slender rings and modules, Pacific J. Math. 49 (1973), 397-406. Zbl0274.16015
 - [22] A. Mader, Groups and modules that are slender as modules over their endomorphism rings, in: Abelian Groups and Modules, CISM Courses and Lectures 287, Springer, 1984, 315-327.
 - [23] G. de Marco and A. Orsatti, Complete linear topologies on abelian groups, Sympos. Math. 13 (1974), 153-161. Zbl0303.20038
 - [24] R. Nunke, Slender groups, Acta Sci. Math. (Szeged) 23 (1962), 67-73. Zbl0108.02601
 - [25] A. Pultr and V. Trnková, Combinatorial, Algebraic and Topological Representations of Groups, Semigroups and Categories, North-Holland, 1980.
 - [26] L. Salce, Moduli slender su anelli di Dedekind, Ann. Univ. Ferrara Sez. VII Sci. Math. 20 (1975), 59-63.
 - [27] E. Sąsiada, Proof that every countable and reduced torsion-free abelian group is slender, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 7 (1959), 143-144. Zbl0085.01702
 - [28] J. Trlifaj, Similarities and differences between abelian groups and modules over non-perfect rings, in: Contemp. Math. 171 Amer. Math. Soc., 1994, 397-406. Zbl0823.20060
 - [29] R. Wisbauer, Grundlagen der Modul und Ringtheorie, R. Fisher, 1988.
 
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.