Jordan tori and polynomial endomorphisms in 2

Manfred Denker; Stefan Heinemann

Fundamenta Mathematicae (1998)

  • Volume: 157, Issue: 2-3, page 139-159
  • ISSN: 0016-2736

Abstract

top
For a class of quadratic polynomial endomorphisms f : 2 2 close to the standard torus map ( x , y ) ( x 2 , y 2 ) , we show that the Julia set J(f) is homeomorphic to the torus. We identify J(f) as the closure ℛ of the set of repelling periodic points and as the Shilov boundary of the set K(f) of points with bounded forward orbit. Moreover, it turns out that (J(f),f) is a mixing repeller and supports a measure of maximal entropy for f which is uniquely determined as the harmonic measure for K(f).

How to cite

top

Denker, Manfred, and Heinemann, Stefan. "Jordan tori and polynomial endomorphisms in $ℂ^2$." Fundamenta Mathematicae 157.2-3 (1998): 139-159. <http://eudml.org/doc/212282>.

@article{Denker1998,
abstract = {For a class of quadratic polynomial endomorphisms $f: ℂ^2 → ℂ^2$ close to the standard torus map $(x,y) → (x^2,y^2)$, we show that the Julia set J(f) is homeomorphic to the torus. We identify J(f) as the closure ℛ of the set of repelling periodic points and as the Shilov boundary of the set K(f) of points with bounded forward orbit. Moreover, it turns out that (J(f),f) is a mixing repeller and supports a measure of maximal entropy for f which is uniquely determined as the harmonic measure for K(f).},
author = {Denker, Manfred, Heinemann, Stefan},
journal = {Fundamenta Mathematicae},
keywords = {quadratic polynomial mappings; expanding repeller; standard map; periodic points; Julia sets; harmonic measures},
language = {eng},
number = {2-3},
pages = {139-159},
title = {Jordan tori and polynomial endomorphisms in $ℂ^2$},
url = {http://eudml.org/doc/212282},
volume = {157},
year = {1998},
}

TY - JOUR
AU - Denker, Manfred
AU - Heinemann, Stefan
TI - Jordan tori and polynomial endomorphisms in $ℂ^2$
JO - Fundamenta Mathematicae
PY - 1998
VL - 157
IS - 2-3
SP - 139
EP - 159
AB - For a class of quadratic polynomial endomorphisms $f: ℂ^2 → ℂ^2$ close to the standard torus map $(x,y) → (x^2,y^2)$, we show that the Julia set J(f) is homeomorphic to the torus. We identify J(f) as the closure ℛ of the set of repelling periodic points and as the Shilov boundary of the set K(f) of points with bounded forward orbit. Moreover, it turns out that (J(f),f) is a mixing repeller and supports a measure of maximal entropy for f which is uniquely determined as the harmonic measure for K(f).
LA - eng
KW - quadratic polynomial mappings; expanding repeller; standard map; periodic points; Julia sets; harmonic measures
UR - http://eudml.org/doc/212282
ER -

References

top
  1. [1] J. Aaronson, M. Denker, and M. Urbański, Ergodic theory of Markov fibred systems and parabolic rational maps, Trans. Amer. Math. Soc. 337 (1993), 495-548. Zbl0789.28010
  2. [2] A. F. Beardon, Iteration of Rational Functions, Grad. Texts in Math. 132, Springer, 1991. 
  3. [3] E. Bedford and J. Smillie, Polynomial diffeomorphisms of 2 : currents, equilibrium measure and hyperbolicity, Invent. Math. 103 (1991), 69-99. Zbl0721.58037
  4. [4] H. Brolin, Invariant sets under iteration of rational functions, Ark. Mat. 6 (1965), 103-144. Zbl0127.03401
  5. [5] J. E. Fornæss and N. Sibony, Complex dynamics in higher dimension. I, Astérisque 222 (1994), 201-231. Zbl0813.58030
  6. [6] O. Forster, Riemannsche Flächen, Heidelberger Taschenbücher 184, Springer, 1977. 
  7. [7] B. A. Fuks, Special Chapters in the Theory of Analytic Functions of Several Variables, Transl. Math. Monographs 14, Amer. Math. Soc., 1991. 
  8. [8] I. R. Gelfand, D. A. Raikow und G. E. Schilow, Kommutative normierte Algebren, Deutscher Verlag der Wiss., 1964. 
  9. [9] H. Grauert und K. Fritzsche, Einführung in die Funktionentheorie mehrerer Veränderlicher, Hochschultext, Springer, 1974. Zbl0285.32001
  10. [10] H. Grauert and R. Remmert, Coherent Analytic Sheaves, Springer, 1984. 
  11. [11] M. Gromov, On the entropy of holomorphic mappings, preprint, Inst. Hautes Etudes Sci. 
  12. [12] P. Hartman, Ordinary Differential Equations, Birkhäuser, 1982. Zbl0476.34002
  13. [13] S. M. Heinemann, Iteration holomorpher Abbildungen in n , Diplomarbeit Universität Göttingen, 1993. 
  14. [14] S. M. Heinemann, Dynamische Aspekte holomorpher Abbildungen in n , Dissertation, Universität Göttingen, 1994. 
  15. [15] S. M. Heinemann, Julia sets for endomorphisms of n , Ergodic Theory Dynam. Systems 16 (1996), 1275-1296. Zbl0874.32008
  16. [16] K. Knopp, Elemente der Funktionentheorie, Sammlung Göschen 2124, de Gruyter, 1978. Zbl0387.30001
  17. [17] K. Krzyżewski and W. Szlenk, On invariant measures for expanding differentiable mappings, Studia Math. 33 (1969), 83-92. Zbl0176.00901
  18. [18] S. Lang, Introduction to Complex Hyperbolic Spaces, Springer, 1987. Zbl0628.32001
  19. [19] R. Remmert, Funktionentheorie I, Grundwissen Math. 5, Springer, 1984. 
  20. [20] G. Scheja und U. Storch, Lehrbuch der Algebra 2, Mathematische Leitfäden, Teubner, 1988. 
  21. [21] F. Schweiger, Numbertheoretical endomorphisms with σ-finite invariant measure, Israel J. Math. 21 (1975), 308-318. Zbl0314.10037
  22. [22] I. R. Shafarevich, Basic Algebraic Geometry, Springer, 1974. Zbl0284.14001

NotesEmbed ?

top

You must be logged in to post comments.