# Jordan tori and polynomial endomorphisms in ${\u2102}^{2}$

Manfred Denker; Stefan Heinemann

Fundamenta Mathematicae (1998)

- Volume: 157, Issue: 2-3, page 139-159
- ISSN: 0016-2736

## Access Full Article

top## Abstract

top## How to cite

topDenker, Manfred, and Heinemann, Stefan. "Jordan tori and polynomial endomorphisms in $ℂ^2$." Fundamenta Mathematicae 157.2-3 (1998): 139-159. <http://eudml.org/doc/212282>.

@article{Denker1998,

abstract = {For a class of quadratic polynomial endomorphisms $f: ℂ^2 → ℂ^2$ close to the standard torus map $(x,y) → (x^2,y^2)$, we show that the Julia set J(f) is homeomorphic to the torus. We identify J(f) as the closure ℛ of the set of repelling periodic points and as the Shilov boundary of the set K(f) of points with bounded forward orbit. Moreover, it turns out that (J(f),f) is a mixing repeller and supports a measure of maximal entropy for f which is uniquely determined as the harmonic measure for K(f).},

author = {Denker, Manfred, Heinemann, Stefan},

journal = {Fundamenta Mathematicae},

keywords = {quadratic polynomial mappings; expanding repeller; standard map; periodic points; Julia sets; harmonic measures},

language = {eng},

number = {2-3},

pages = {139-159},

title = {Jordan tori and polynomial endomorphisms in $ℂ^2$},

url = {http://eudml.org/doc/212282},

volume = {157},

year = {1998},

}

TY - JOUR

AU - Denker, Manfred

AU - Heinemann, Stefan

TI - Jordan tori and polynomial endomorphisms in $ℂ^2$

JO - Fundamenta Mathematicae

PY - 1998

VL - 157

IS - 2-3

SP - 139

EP - 159

AB - For a class of quadratic polynomial endomorphisms $f: ℂ^2 → ℂ^2$ close to the standard torus map $(x,y) → (x^2,y^2)$, we show that the Julia set J(f) is homeomorphic to the torus. We identify J(f) as the closure ℛ of the set of repelling periodic points and as the Shilov boundary of the set K(f) of points with bounded forward orbit. Moreover, it turns out that (J(f),f) is a mixing repeller and supports a measure of maximal entropy for f which is uniquely determined as the harmonic measure for K(f).

LA - eng

KW - quadratic polynomial mappings; expanding repeller; standard map; periodic points; Julia sets; harmonic measures

UR - http://eudml.org/doc/212282

ER -

## References

top- [1] J. Aaronson, M. Denker, and M. Urbański, Ergodic theory of Markov fibred systems and parabolic rational maps, Trans. Amer. Math. Soc. 337 (1993), 495-548. Zbl0789.28010
- [2] A. F. Beardon, Iteration of Rational Functions, Grad. Texts in Math. 132, Springer, 1991.
- [3] E. Bedford and J. Smillie, Polynomial diffeomorphisms of ${\u2102}^{2}$: currents, equilibrium measure and hyperbolicity, Invent. Math. 103 (1991), 69-99. Zbl0721.58037
- [4] H. Brolin, Invariant sets under iteration of rational functions, Ark. Mat. 6 (1965), 103-144. Zbl0127.03401
- [5] J. E. Fornæss and N. Sibony, Complex dynamics in higher dimension. I, Astérisque 222 (1994), 201-231. Zbl0813.58030
- [6] O. Forster, Riemannsche Flächen, Heidelberger Taschenbücher 184, Springer, 1977.
- [7] B. A. Fuks, Special Chapters in the Theory of Analytic Functions of Several Variables, Transl. Math. Monographs 14, Amer. Math. Soc., 1991.
- [8] I. R. Gelfand, D. A. Raikow und G. E. Schilow, Kommutative normierte Algebren, Deutscher Verlag der Wiss., 1964.
- [9] H. Grauert und K. Fritzsche, Einführung in die Funktionentheorie mehrerer Veränderlicher, Hochschultext, Springer, 1974. Zbl0285.32001
- [10] H. Grauert and R. Remmert, Coherent Analytic Sheaves, Springer, 1984.
- [11] M. Gromov, On the entropy of holomorphic mappings, preprint, Inst. Hautes Etudes Sci.
- [12] P. Hartman, Ordinary Differential Equations, Birkhäuser, 1982. Zbl0476.34002
- [13] S. M. Heinemann, Iteration holomorpher Abbildungen in ${\u2102}^{n}$, Diplomarbeit Universität Göttingen, 1993.
- [14] S. M. Heinemann, Dynamische Aspekte holomorpher Abbildungen in ${\u2102}^{n}$, Dissertation, Universität Göttingen, 1994.
- [15] S. M. Heinemann, Julia sets for endomorphisms of ${\u2102}^{n}$, Ergodic Theory Dynam. Systems 16 (1996), 1275-1296. Zbl0874.32008
- [16] K. Knopp, Elemente der Funktionentheorie, Sammlung Göschen 2124, de Gruyter, 1978. Zbl0387.30001
- [17] K. Krzyżewski and W. Szlenk, On invariant measures for expanding differentiable mappings, Studia Math. 33 (1969), 83-92. Zbl0176.00901
- [18] S. Lang, Introduction to Complex Hyperbolic Spaces, Springer, 1987. Zbl0628.32001
- [19] R. Remmert, Funktionentheorie I, Grundwissen Math. 5, Springer, 1984.
- [20] G. Scheja und U. Storch, Lehrbuch der Algebra 2, Mathematische Leitfäden, Teubner, 1988.
- [21] F. Schweiger, Numbertheoretical endomorphisms with σ-finite invariant measure, Israel J. Math. 21 (1975), 308-318. Zbl0314.10037
- [22] I. R. Shafarevich, Basic Algebraic Geometry, Springer, 1974. Zbl0284.14001