Jordan tori and polynomial endomorphisms in 2

Manfred Denker; Stefan Heinemann

Fundamenta Mathematicae (1998)

  • Volume: 157, Issue: 2-3, page 139-159
  • ISSN: 0016-2736

Abstract

top
For a class of quadratic polynomial endomorphisms f : 2 2 close to the standard torus map ( x , y ) ( x 2 , y 2 ) , we show that the Julia set J(f) is homeomorphic to the torus. We identify J(f) as the closure ℛ of the set of repelling periodic points and as the Shilov boundary of the set K(f) of points with bounded forward orbit. Moreover, it turns out that (J(f),f) is a mixing repeller and supports a measure of maximal entropy for f which is uniquely determined as the harmonic measure for K(f).

How to cite

top

Denker, Manfred, and Heinemann, Stefan. "Jordan tori and polynomial endomorphisms in $ℂ^2$." Fundamenta Mathematicae 157.2-3 (1998): 139-159. <http://eudml.org/doc/212282>.

@article{Denker1998,
abstract = {For a class of quadratic polynomial endomorphisms $f: ℂ^2 → ℂ^2$ close to the standard torus map $(x,y) → (x^2,y^2)$, we show that the Julia set J(f) is homeomorphic to the torus. We identify J(f) as the closure ℛ of the set of repelling periodic points and as the Shilov boundary of the set K(f) of points with bounded forward orbit. Moreover, it turns out that (J(f),f) is a mixing repeller and supports a measure of maximal entropy for f which is uniquely determined as the harmonic measure for K(f).},
author = {Denker, Manfred, Heinemann, Stefan},
journal = {Fundamenta Mathematicae},
keywords = {quadratic polynomial mappings; expanding repeller; standard map; periodic points; Julia sets; harmonic measures},
language = {eng},
number = {2-3},
pages = {139-159},
title = {Jordan tori and polynomial endomorphisms in $ℂ^2$},
url = {http://eudml.org/doc/212282},
volume = {157},
year = {1998},
}

TY - JOUR
AU - Denker, Manfred
AU - Heinemann, Stefan
TI - Jordan tori and polynomial endomorphisms in $ℂ^2$
JO - Fundamenta Mathematicae
PY - 1998
VL - 157
IS - 2-3
SP - 139
EP - 159
AB - For a class of quadratic polynomial endomorphisms $f: ℂ^2 → ℂ^2$ close to the standard torus map $(x,y) → (x^2,y^2)$, we show that the Julia set J(f) is homeomorphic to the torus. We identify J(f) as the closure ℛ of the set of repelling periodic points and as the Shilov boundary of the set K(f) of points with bounded forward orbit. Moreover, it turns out that (J(f),f) is a mixing repeller and supports a measure of maximal entropy for f which is uniquely determined as the harmonic measure for K(f).
LA - eng
KW - quadratic polynomial mappings; expanding repeller; standard map; periodic points; Julia sets; harmonic measures
UR - http://eudml.org/doc/212282
ER -

References

top
  1. [1] J. Aaronson, M. Denker, and M. Urbański, Ergodic theory of Markov fibred systems and parabolic rational maps, Trans. Amer. Math. Soc. 337 (1993), 495-548. Zbl0789.28010
  2. [2] A. F. Beardon, Iteration of Rational Functions, Grad. Texts in Math. 132, Springer, 1991. 
  3. [3] E. Bedford and J. Smillie, Polynomial diffeomorphisms of 2 : currents, equilibrium measure and hyperbolicity, Invent. Math. 103 (1991), 69-99. Zbl0721.58037
  4. [4] H. Brolin, Invariant sets under iteration of rational functions, Ark. Mat. 6 (1965), 103-144. Zbl0127.03401
  5. [5] J. E. Fornæss and N. Sibony, Complex dynamics in higher dimension. I, Astérisque 222 (1994), 201-231. Zbl0813.58030
  6. [6] O. Forster, Riemannsche Flächen, Heidelberger Taschenbücher 184, Springer, 1977. 
  7. [7] B. A. Fuks, Special Chapters in the Theory of Analytic Functions of Several Variables, Transl. Math. Monographs 14, Amer. Math. Soc., 1991. 
  8. [8] I. R. Gelfand, D. A. Raikow und G. E. Schilow, Kommutative normierte Algebren, Deutscher Verlag der Wiss., 1964. 
  9. [9] H. Grauert und K. Fritzsche, Einführung in die Funktionentheorie mehrerer Veränderlicher, Hochschultext, Springer, 1974. Zbl0285.32001
  10. [10] H. Grauert and R. Remmert, Coherent Analytic Sheaves, Springer, 1984. 
  11. [11] M. Gromov, On the entropy of holomorphic mappings, preprint, Inst. Hautes Etudes Sci. 
  12. [12] P. Hartman, Ordinary Differential Equations, Birkhäuser, 1982. Zbl0476.34002
  13. [13] S. M. Heinemann, Iteration holomorpher Abbildungen in n , Diplomarbeit Universität Göttingen, 1993. 
  14. [14] S. M. Heinemann, Dynamische Aspekte holomorpher Abbildungen in n , Dissertation, Universität Göttingen, 1994. 
  15. [15] S. M. Heinemann, Julia sets for endomorphisms of n , Ergodic Theory Dynam. Systems 16 (1996), 1275-1296. Zbl0874.32008
  16. [16] K. Knopp, Elemente der Funktionentheorie, Sammlung Göschen 2124, de Gruyter, 1978. Zbl0387.30001
  17. [17] K. Krzyżewski and W. Szlenk, On invariant measures for expanding differentiable mappings, Studia Math. 33 (1969), 83-92. Zbl0176.00901
  18. [18] S. Lang, Introduction to Complex Hyperbolic Spaces, Springer, 1987. Zbl0628.32001
  19. [19] R. Remmert, Funktionentheorie I, Grundwissen Math. 5, Springer, 1984. 
  20. [20] G. Scheja und U. Storch, Lehrbuch der Algebra 2, Mathematische Leitfäden, Teubner, 1988. 
  21. [21] F. Schweiger, Numbertheoretical endomorphisms with σ-finite invariant measure, Israel J. Math. 21 (1975), 308-318. Zbl0314.10037
  22. [22] I. R. Shafarevich, Basic Algebraic Geometry, Springer, 1974. Zbl0284.14001

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.