A cut salad of cocycles
Jon Aaronson; Mariusz Lemańczyk; Dalibor Volný
Fundamenta Mathematicae (1998)
- Volume: 157, Issue: 2-3, page 99-119
- ISSN: 0016-2736
Access Full Article
topAbstract
topHow to cite
topAaronson, Jon, Lemańczyk, Mariusz, and Volný, Dalibor. "A cut salad of cocycles." Fundamenta Mathematicae 157.2-3 (1998): 99-119. <http://eudml.org/doc/212297>.
@article{Aaronson1998,
abstract = {We study the centraliser of locally compact group extensions of ergodic probability preserving transformations. New methods establishing ergodicity of group extensions are introduced, and new examples of squashable and non-coalescent group extensions are constructed.},
author = {Aaronson, Jon, Lemańczyk, Mariusz, Volný, Dalibor},
journal = {Fundamenta Mathematicae},
keywords = {skew product; group extension; cocycle; ergodic measure-preserving transformation; squashable; non-coalescent; Maharam transformation},
language = {eng},
number = {2-3},
pages = {99-119},
title = {A cut salad of cocycles},
url = {http://eudml.org/doc/212297},
volume = {157},
year = {1998},
}
TY - JOUR
AU - Aaronson, Jon
AU - Lemańczyk, Mariusz
AU - Volný, Dalibor
TI - A cut salad of cocycles
JO - Fundamenta Mathematicae
PY - 1998
VL - 157
IS - 2-3
SP - 99
EP - 119
AB - We study the centraliser of locally compact group extensions of ergodic probability preserving transformations. New methods establishing ergodicity of group extensions are introduced, and new examples of squashable and non-coalescent group extensions are constructed.
LA - eng
KW - skew product; group extension; cocycle; ergodic measure-preserving transformation; squashable; non-coalescent; Maharam transformation
UR - http://eudml.org/doc/212297
ER -
References
top- [A1] J. Aaronson, The asymptotic distributional behaviour of transformations preserving infinite measures, J. Anal. Math. 39 (1981), 203-234. Zbl0499.28013
- [A2] J. Aaronson, The intrinsic normalising constants of transformations preserving infinite measures, ibid. 49 (1987), 239-270. Zbl0644.28013
- [A-L-M-N] J. Aaronson, M. Lemańczyk, C. Mauduit and H. Nakada, Koksma's inequality and group extensions of Kronecker transformations, in: Algorithms, Fractals and Dynamics (Okayama and Kyoto, 1992), Y. Takahashi (ed.), Plenum, New York, 1995, 27-50. Zbl0878.28009
- [A-L-V] J. Aaronson, M. Lemańczyk and D. Volný, A salad of cocycles, preprint, internet: http://www.math.tau.ac.il/~aaro, 1995.
- [D] A. Danilenko, Comparison of cocycles of measured equivalence relations and lifting problems, Ergodic Theory Dynam. Systems 18 (1998), 125-151. Zbl0919.28015
- [F-M] J. Feldman and C. C. Moore, Ergodic equivalence relations, cohomology, and von Neumann algebras, I, Trans. Amer. Math. Soc. 234 (1977), 289-324.
- [G-L-S] P. Gabriel, M. Lemańczyk and K. Schmidt, Extensions of cocycles for hyperfinite actions and applications, Monatsh. Math. 123 (1997), 209-228. Zbl0887.28008
- [G-S] V. I. Golodets and S. D. Sinel'shchikov, Locally compact groups appearing as ranges of cocycles of ergodic ℤ-actions, Ergodic Theory Dynam. Systems 5 (1985), 45-57.
- [H] P. Halmos, Lectures on Ergodic Theory, Chelsea, New York, 1953.
- [H-P] F. Hahn and W. Parry, Some characteristic properties of dynamical systems with quasi-discrete spectrum, Math. Systems Theory 2 (1968), 179-190. Zbl0167.32902
- [H-O-O] T. Hamachi, Y. Oka and M. Osikawa, A classification of ergodic non-singular transformation groups, Mem. Fac. Sci. Kyushu Univ. Ser. A 28 (1974), 113-133. Zbl0293.28011
- [K-W] Y. Katznelson and B. Weiss, Commuting measure preserving transformations, Israel J. Math. 12 (1972), 161-172. Zbl0239.28014
- [K] W. Krieger, On ergodic flows and isomorphism of factors, Math. Ann. 223 (1976), 19-70. Zbl0332.46045
- [L-L-T] M. Lemańczyk, P. Liardet and J-P. Thouvenot, Coalescence of circle extensions of measure preserving transformations, Ergodic Theory Dynam. Systems 12 (1992), 769-789. Zbl0785.58030
- [L-V] P. Liardet and D. Volný, Sums of continuous and differentiable functions in dynamical systems, Israel J. Math. 98 (1997), 29-60. Zbl0881.28012
- [L] D. Lind, Locally compact measure preserving flows, Adv. Math. 15 (1975), 175-193. Zbl0293.28012
- [M] D. Maharam, Incompressible transformations, Fund. Math. 56 (1964), 35-50. Zbl0133.00304
- [M-S] C. Moore and K. Schmidt, Coboundaries and homomorphisms for non-singular actions and a problem of H. Helson, Proc. London Math. Soc. 40 (1980), 443-475. Zbl0428.28014
- [O] D. Ornstein, Ergodic Theory, Randomness, and Dynamical Systems, Yale Math. Monographs 5, Yale Univ. Press, New Haven, 1974.
- [O-W] D. Ornstein and B. Weiss, Entropy and isomorphism theorems for actions of amenable groups, J. Anal. Math. 48 (1987), 1-142.
- [R] D. Rudolph, Classifying the isometric extensions of a Bernoulli shift, ibid. 34 (1978), 36-60. Zbl0415.28012
- [S] K. Schmidt, Cocycles of Ergodic Transformation Groups, Lecture Notes in Math. 1, Mac Millan of India, 1977. Zbl0421.28017
- [Z] R. Zimmer, Amenable ergodic group actions and an application to Poisson boundaries of random walks, J. Funct. Anal. 27 (1978), 350-372. Zbl0391.28011
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.