Mapping class group of a handlebody

Bronisław Wajnryb

Fundamenta Mathematicae (1998)

  • Volume: 158, Issue: 3, page 195-228
  • ISSN: 0016-2736

Abstract

top
Let B be a 3-dimensional handlebody of genus g. Let ℳ be the group of the isotopy classes of orientation preserving homeomorphisms of B. We construct a 2-dimensional simplicial complex X, connected and simply-connected, on which ℳ acts by simplicial transformations and has only a finite number of orbits. From this action we derive an explicit finite presentation of ℳ.

How to cite

top

Wajnryb, Bronisław. "Mapping class group of a handlebody." Fundamenta Mathematicae 158.3 (1998): 195-228. <http://eudml.org/doc/212312>.

@article{Wajnryb1998,
abstract = {Let B be a 3-dimensional handlebody of genus g. Let ℳ be the group of the isotopy classes of orientation preserving homeomorphisms of B. We construct a 2-dimensional simplicial complex X, connected and simply-connected, on which ℳ acts by simplicial transformations and has only a finite number of orbits. From this action we derive an explicit finite presentation of ℳ.},
author = {Wajnryb, Bronisław},
journal = {Fundamenta Mathematicae},
keywords = {handlebody; mapping class group; explicit presentation},
language = {eng},
number = {3},
pages = {195-228},
title = {Mapping class group of a handlebody},
url = {http://eudml.org/doc/212312},
volume = {158},
year = {1998},
}

TY - JOUR
AU - Wajnryb, Bronisław
TI - Mapping class group of a handlebody
JO - Fundamenta Mathematicae
PY - 1998
VL - 158
IS - 3
SP - 195
EP - 228
AB - Let B be a 3-dimensional handlebody of genus g. Let ℳ be the group of the isotopy classes of orientation preserving homeomorphisms of B. We construct a 2-dimensional simplicial complex X, connected and simply-connected, on which ℳ acts by simplicial transformations and has only a finite number of orbits. From this action we derive an explicit finite presentation of ℳ.
LA - eng
KW - handlebody; mapping class group; explicit presentation
UR - http://eudml.org/doc/212312
ER -

References

top
  1. [1] Bergau, P. und Mennicke, J., Über topologische Abbildungen der Bretzelfläche vom Geschlecht 2, Math. Z. 74 (1960), 414-435. 
  2. [2] Birman, J. S., Braids, Links, and Mapping Class Groups, Ann. of Math. Stud. 82, Princeton Univ. Press, 1974. 
  3. [3] Birman, J. S. and Hilden, H., On mapping class groups of closed surfaces as covering spaces, in: Advances in the Theory of Riemann Surfaces, Ann. of Math. Stud. 66, Princeton Univ. Press, 1971, 81-115. Zbl0217.48602
  4. [4] Dehn, M., Die Gruppe der Abbildungsklassen, Acta Math. 69 (1938), 135-206. Zbl64.1276.01
  5. [5] Epstein, D. B. A., Curves on 2-manifolds and isotopies, ibid. 115 (1966), 83-107. Zbl0136.44605
  6. [6] Harer, J., The second homology group of the mapping class group of an orientable surface, Invent. Math. 72 (1983), 221-239. Zbl0533.57003
  7. [7] Hatcher, A. and Thurston, W., A presentation for the mapping class group of a closed orientable surface, Topology 19 (1980), 221-237. Zbl0447.57005
  8. [8] Heusner, M., Eine Präsentation der Abbildungsklassengruppe einer geschlossenen, orientierbaren Fläche, Diplomarbeit, University of Frankfurt. 
  9. [9] Humphries, S., Generators for the mapping class group, in: Topology of Low-Dimensional Manifolds, Lecture Notes in Math. 722, Springer, 1979, 44-47. 
  10. [10] Johnson, D., Homeomorphisms of a surface which act trivially on homology, Proc. Amer. Math. Soc. 75 (1979), 119-125. Zbl0407.57003
  11. [11] Laudenbach, F., Présentation du groupe de difféotopies d'une surface compacte orientable, in: Travaux de Thurston sur les surfaces, Astérisque 66-67 (1979), 267-282. 
  12. [12] Lickorish, W. B. R., A finite set of generators for the homeotopy group of a 2-manifold, Proc. Cambridge Philos. Soc. 60 (1964), 769-778. Zbl0131.20801
  13. [13] Suzuki, S., On homeomorphisms of a 3-dimensional handlebody, Canad. J. Math. 29 (1977), 111-124. Zbl0339.57001
  14. [14] Wajnryb, B., A simple presentation for the mapping class group of an orientable surface, Israel J. Math. 45 (1983), 157-174. Zbl0533.57002

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.