The Gaussian measure on algebraic varieties

Ilka Agricola; Thomas Friedrich

Fundamenta Mathematicae (1999)

  • Volume: 159, Issue: 1, page 91-98
  • ISSN: 0016-2736

Abstract

top
We prove that the ring ℝ[M] of all polynomials defined on a real algebraic variety M n is dense in the Hilbert space L 2 ( M , e - | x | 2 d μ ) , where dμ denotes the volume form of M and d ν = e - | x | 2 d μ the Gaussian measure on M.

How to cite

top

Agricola, Ilka, and Friedrich, Thomas. "The Gaussian measure on algebraic varieties." Fundamenta Mathematicae 159.1 (1999): 91-98. <http://eudml.org/doc/212322>.

@article{Agricola1999,
abstract = {We prove that the ring ℝ[M] of all polynomials defined on a real algebraic variety $M⊂ℝ^n$ is dense in the Hilbert space $L^2(M,e^\{-|x|^2\}dμ)$, where dμ denotes the volume form of M and $dν = e^\{-|x|^2\}dμ$ the Gaussian measure on M.},
author = {Agricola, Ilka, Friedrich, Thomas},
journal = {Fundamenta Mathematicae},
keywords = {Gaussian measure; algebraic variety; ring of polynomials; real algebraic variety; Hilbert space},
language = {eng},
number = {1},
pages = {91-98},
title = {The Gaussian measure on algebraic varieties},
url = {http://eudml.org/doc/212322},
volume = {159},
year = {1999},
}

TY - JOUR
AU - Agricola, Ilka
AU - Friedrich, Thomas
TI - The Gaussian measure on algebraic varieties
JO - Fundamenta Mathematicae
PY - 1999
VL - 159
IS - 1
SP - 91
EP - 98
AB - We prove that the ring ℝ[M] of all polynomials defined on a real algebraic variety $M⊂ℝ^n$ is dense in the Hilbert space $L^2(M,e^{-|x|^2}dμ)$, where dμ denotes the volume form of M and $dν = e^{-|x|^2}dμ$ the Gaussian measure on M.
LA - eng
KW - Gaussian measure; algebraic variety; ring of polynomials; real algebraic variety; Hilbert space
UR - http://eudml.org/doc/212322
ER -

References

top
  1. [Agr] I. Agricola, Dissertation am Institut für Reine Mathematik der Humboldt-Universität zu Berlin, in preparation. 
  2. [Brö] L. Bröcker, Semialgebraische Geometrie, Jahresber. Deutsch. Math.-Verein. 97 (1995), 130-156. 
  3. [Mau] K. Maurin, Analysis, Vol. 2, Reidel and PWN-Polish Sci. Publ., Dordrecht and Warszawa, 1980. 
  4. [Mi1] J. Milnor, On the Betti numbers of real varieties, Proc. Amer. Math. Soc. 15 (1964), 275-280. Zbl0123.38302
  5. [Mi2] J. Milnor, Euler characteristics and finitely additive Steiner measures, in: Collected Papers, Vol. 1, Publish or Perish, 1994, 213-234. 
  6. [Rud] W. Rudin, Real and Complex Analysis, McGraw-Hill, 1966. 
  7. [Sto1] W. Stoll, The growth of the area of a transcendental analytic set. I, Math. Ann. 156 (1964), 47-78. Zbl0126.09502
  8. [Sto2] W. Stoll, The growth of the area of a transcendental analytic set. II, ibid. 156 (1964), 144-170. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.