The Gaussian measure on algebraic varieties
Ilka Agricola; Thomas Friedrich
Fundamenta Mathematicae (1999)
- Volume: 159, Issue: 1, page 91-98
- ISSN: 0016-2736
Access Full Article
topAbstract
topHow to cite
topAgricola, Ilka, and Friedrich, Thomas. "The Gaussian measure on algebraic varieties." Fundamenta Mathematicae 159.1 (1999): 91-98. <http://eudml.org/doc/212322>.
@article{Agricola1999,
	abstract = {We prove that the ring ℝ[M] of all polynomials defined on a real algebraic variety $M⊂ℝ^n$ is dense in the Hilbert space $L^2(M,e^\{-|x|^2\}dμ)$, where dμ denotes the volume form of M and $dν = e^\{-|x|^2\}dμ$ the Gaussian measure on M.},
	author = {Agricola, Ilka, Friedrich, Thomas},
	journal = {Fundamenta Mathematicae},
	keywords = {Gaussian measure; algebraic variety; ring of polynomials; real algebraic variety; Hilbert space},
	language = {eng},
	number = {1},
	pages = {91-98},
	title = {The Gaussian measure on algebraic varieties},
	url = {http://eudml.org/doc/212322},
	volume = {159},
	year = {1999},
}
TY  - JOUR
AU  - Agricola, Ilka
AU  - Friedrich, Thomas
TI  - The Gaussian measure on algebraic varieties
JO  - Fundamenta Mathematicae
PY  - 1999
VL  - 159
IS  - 1
SP  - 91
EP  - 98
AB  - We prove that the ring ℝ[M] of all polynomials defined on a real algebraic variety $M⊂ℝ^n$ is dense in the Hilbert space $L^2(M,e^{-|x|^2}dμ)$, where dμ denotes the volume form of M and $dν = e^{-|x|^2}dμ$ the Gaussian measure on M.
LA  - eng
KW  - Gaussian measure; algebraic variety; ring of polynomials; real algebraic variety; Hilbert space
UR  - http://eudml.org/doc/212322
ER  - 
References
top- [Agr] I. Agricola, Dissertation am Institut für Reine Mathematik der Humboldt-Universität zu Berlin, in preparation.
- [Brö] L. Bröcker, Semialgebraische Geometrie, Jahresber. Deutsch. Math.-Verein. 97 (1995), 130-156.
- [Mau] K. Maurin, Analysis, Vol. 2, Reidel and PWN-Polish Sci. Publ., Dordrecht and Warszawa, 1980.
- [Mi1] J. Milnor, On the Betti numbers of real varieties, Proc. Amer. Math. Soc. 15 (1964), 275-280. Zbl0123.38302
- [Mi2] J. Milnor, Euler characteristics and finitely additive Steiner measures, in: Collected Papers, Vol. 1, Publish or Perish, 1994, 213-234.
- [Rud] W. Rudin, Real and Complex Analysis, McGraw-Hill, 1966.
- [Sto1] W. Stoll, The growth of the area of a transcendental analytic set. I, Math. Ann. 156 (1964), 47-78. Zbl0126.09502
- [Sto2] W. Stoll, The growth of the area of a transcendental analytic set. II, ibid. 156 (1964), 144-170.
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.
 
 