Strong Fubini properties of ideals
Ireneusz Recław; Piotr Zakrzewski
Fundamenta Mathematicae (1999)
- Volume: 159, Issue: 2, page 135-152
- ISSN: 0016-2736
Access Full Article
topAbstract
topHow to cite
topReferences
top- [1] T. Bartoszyński and H. Judah, Set Theory. On the Structure of the Real Line, A K Peters, 1995. Zbl0834.04001
- [2] R. H. Bing, W. W. Bledsoe and R. D. Mauldin, Sets generated by rectangles, Pacific J. Math. 51 (1974), 27-36. Zbl0261.04001
- [3] J. Brzuchowski, J. Cichoń and B. Węglorz, Some applications of strong Lusin sets, Compositio Math. 43 (1981), 217-224. Zbl0463.28001
- [4] T. Carlson, Extending Lebesgue measure by infinitely many sets, Pacific J. Math. 115 (1984), 33-45. Zbl0582.28004
- [5] K. Eda, M. Kada and Y. Yuasa, The tightness about sequential fans and combinatorial properties, J. Math. Soc. Japan 49 (1997), 181-187. Zbl0898.03019
- [6] C. Freiling, Axioms of symmetry: throwing the darts at the real line, J. Symbolic Logic 51 (1986), 190-220. Zbl0619.03035
- [7] D. H. Fremlin, Measure-additive coverings and measurable selectors, Dissertationes Math. 260 (1987). Zbl0703.28003
- [8] D. H. Fremlin, Real-valued-measurable cardinals, in: Set Theory of the Reals, H. Judah (ed.), Israel Math. Conf. Proc. 6 (1993), 151-304.
- [9] H. Friedman, A consistent Fubini-Tonelli theorem for nonmeasurable functions, Illinois J. Math. 24 (1980), 390-395. Zbl0467.28003
- [10] P. R. Halmos, Measure Theory, Van Nostrand, 1950.
- [11] M. Kada and Y. Yuasa, Cardinal invariants about shrinkability of unbounded sets, Topology Appl. 74 (1996), 215-223.
- [12] A. Kamburelis, A new proof of the Gitik-Shelah theorem, Israel J. Math. 72 (1990), 373-380. Zbl0738.03019
- [13] A. Kanamori and M. Magidor, The evolution of large cardinal axioms in set theory, in: Higher Set Theory, Lecture Notes in Math. 669, Springer, 1978, 99-275. Zbl0381.03038
- [14] A. S. Kechris, Classical Descriptive Set Theory, Grad. Texts in Math. 156, Springer, 1995.
- [15] A. W. Miller, Mapping a set of reals onto the reals, J. Symbolic Logic 48 (1983), 575-584. Zbl0527.03031
- [16] I. Recław and P. Zakrzewski, Fubini properties of ideals, submitted for publication.
- [17] I. Recław and P. Zakrzewski, Strong Fubini properties of ideals, preprint P 97-10, Institute of Math., Warsaw University. Zbl0926.03058
- [18] J. Shipman, Cardinal conditions for strong Fubini theorems, Trans. Amer. Math. Soc. 321 (1990), 465-481. Zbl0715.03022
- [19] P. Zakrzewski, Strong Fubini axioms from measure extension axioms, Comment. Math. Univ. Carolin. 33 (1992), 291-297. Zbl0765.03026
- [20] P. Zakrzewski, Extending Baire Property by countably many sets, submitted for publication.
- [21] P. Zakrzewski, Fubini properties of ideals and forcing, to appear. Zbl1016.03050