Ideals induced by Tsirelson submeasures

Ilijas Farah

Fundamenta Mathematicae (1999)

  • Volume: 159, Issue: 3, page 243-258
  • ISSN: 0016-2736

Abstract

top
We use Tsirelson’s Banach space ([2]) to define an F σ P-ideal which refutes a conjecture of Mazur and Kechris (see [12, 9, 8]).

How to cite

top

Farah, Ilijas. "Ideals induced by Tsirelson submeasures." Fundamenta Mathematicae 159.3 (1999): 243-258. <http://eudml.org/doc/212332>.

@article{Farah1999,
abstract = {We use Tsirelson’s Banach space ([2]) to define an $F_σ$ P-ideal which refutes a conjecture of Mazur and Kechris (see [12, 9, 8]).},
author = {Farah, Ilijas},
journal = {Fundamenta Mathematicae},
keywords = {Borel-cardinality; quotients over Borel equivalence relations; Polish space; Borel ideals; trichotomy conjecture; dichotomy conjecture; Tsirelson's Banach space; -ideal},
language = {eng},
number = {3},
pages = {243-258},
title = {Ideals induced by Tsirelson submeasures},
url = {http://eudml.org/doc/212332},
volume = {159},
year = {1999},
}

TY - JOUR
AU - Farah, Ilijas
TI - Ideals induced by Tsirelson submeasures
JO - Fundamenta Mathematicae
PY - 1999
VL - 159
IS - 3
SP - 243
EP - 258
AB - We use Tsirelson’s Banach space ([2]) to define an $F_σ$ P-ideal which refutes a conjecture of Mazur and Kechris (see [12, 9, 8]).
LA - eng
KW - Borel-cardinality; quotients over Borel equivalence relations; Polish space; Borel ideals; trichotomy conjecture; dichotomy conjecture; Tsirelson's Banach space; -ideal
UR - http://eudml.org/doc/212332
ER -

References

top
  1. [1] P. G. Casazza, W. B. Johnson and L. Tzafriri, On Tsirelson's space, Israel J. Math. 47 (1984), 81-98. 
  2. [2] P. G. Casazza and T. J. Shura, Tsirelson's Space, Lecture Notes in Math. 1363, Springer, 1980. Zbl0709.46008
  3. [3] I. Farah, Analytic quotients, to appear. Zbl0966.03045
  4. [4] I. Farah, Analytic ideals and their quotients, PhD thesis, University of Toronto, 1997. 
  5. [5] I. Farah, Basis problem for turbulent actions, preprint, 1998. 
  6. [6] W. T. Gowers, Recent results in the theory of infinite-dimensional Banach spaces, in: Proc. Internat. Congress of Mathematicians, Zürich 1994, Birkhäuser, 1995, 932-942. Zbl0868.46004
  7. [7] G. Hjorth, Actions by classical Banach spaces, J. Symbolic Logic, to appear. 
  8. [8] G. Hjorth and A. S. Kechris, New dichotomies for Borel equivalence relations, Bull. Symbolic Logic 3 (1997), 329-346. 
  9. [9] A. S. Kechris, Rigidity properties of Borel ideals on the integers, Topology Appl. 85 (1998), 195-205. Zbl0926.03057
  10. [10] A. Louveau, On the size of quotients by definable equivalence relations, in: Proc. Internat. Congress of Mathematicians, Zürich 1994, Birkhäuser, 1995, 269-276. Zbl0847.04003
  11. [11] K. Mazur, F σ -ideals and ω 1 ω 1 * -gaps in the Boolean algebra P(ω)/I, Fund. Math. 138 (1991), 103-111. 
  12. [12] K. Mazur, Towards the dichotomy for F σ -ideals, preprint, 1996. 
  13. [13] E. Odell and T. Schlumprecht, Distortion and stabilized structure in Banach spaces; New geometric phenomena for Banach and Hilbert spaces, in: Proc. Internat. Congress of Mathematicians, Zürich 1994, Birkhäuser, 1995, 955-965. Zbl0868.46010
  14. [14] M. R. Oliver, Borel upper bounds for the Louveau-Veličković and Mazur towers, preprint, 1998. 
  15. [15] S. Shelah, Proper Forcing, Lecture Notes in Math. 940, Springer, 1982. 
  16. [16] S. Solecki, personal communication, 1997. 
  17. [17] S. Solecki, Analytic ideals, Bull. Symbolic Logic 2 (1996), 339-348. Zbl0862.04002
  18. [18] B. Veličković, Definable automorphisms of P(ω)/fin, Proc. Amer. Math. Soc. 96 (1986), 130-135. Zbl0614.03049
  19. [19] B. Veličković, A note on Tsirelson type ideals, Fund. Math., this issue. Zbl0930.03056

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.