Area and Hausdorff dimension of the set of accessible points of the Julia sets of λe^z and λ sin(z)
Fundamenta Mathematicae (1999)
- Volume: 159, Issue: 3, page 269-287
- ISSN: 0016-2736
Access Full Article
topAbstract
topHow to cite
topReferences
top- [1] I. N. Baker, Fixpoints and iterates of entire functions, Math. Z. 71 (1959), 146-153. Zbl0168.04002
- [2] R. Bowen, Hausdorff dimension of quasi-circles, Inst. Hautes Études Sci. Publ. Math. 50 (1979), 11-26.
- [3] R. L. Devaney and L. Goldberg, Uniformization of attracting basins for exponential maps, Duke Math. J. 2 (1987), 253-266. Zbl0621.30024
- [4] R. Devaney and M. Krych, Dynamics of exp(z), Ergodic Theory Dynam. Systems 4 (1984), 35-52. Zbl0567.58025
- [5] R. L. Devaney and F. Tangerman, Dynamics of entire functions near the essential singularity, ibid. 6 (1986), 489-503. Zbl0612.58020
- [6] P. L. Duren, Univalent Functions, Springer, New York, 1983.
- [7] A. E. Eremenko and M. Yu. Lyubich, Dynamical properties of some classes of entire functions, Ann. Inst. Fourier (Grenoble) 42 (1992), 989-1020. Zbl0735.58031
- [8] N. Makarov, On the distortion of boundary sets under conformal mappings, Proc. London Math. Soc. 51 (1985), 369-384. Zbl0573.30029
- [9] J. Mayer, An explosion point for the set of endpoints of the Julia set of λexp(z), Ergodic Theory Dynam. Systems 10 (1990), 177-183.
- [10] C. McMullen, Area and Hausdorff dimension of Julia sets of entire functions, Trans. Amer. Math. Soc. 300 (1987), 329-342. Zbl0618.30027
- [11] F. Przytycki and M. Urbański, Conformal repellers and ergodic theory, in preparation. Zbl1202.37001
- [12] D. Ruelle, Repellers for real analytic maps, Ergodic Theory Dynam. Systems 2 (1982), 99-107. Zbl0506.58024