A partition theorem for α-large sets

Teresa Bigorajska; Henryk Kotlarski

Fundamenta Mathematicae (1999)

  • Volume: 160, Issue: 1, page 27-37
  • ISSN: 0016-2736

How to cite

top

Bigorajska, Teresa, and Kotlarski, Henryk. "A partition theorem for α-large sets." Fundamenta Mathematicae 160.1 (1999): 27-37. <http://eudml.org/doc/212379>.

@article{Bigorajska1999,
abstract = {},
author = {Bigorajska, Teresa, Kotlarski, Henryk},
journal = {Fundamenta Mathematicae},
keywords = {Hardy hierarchy; largeness; partition},
language = {eng},
number = {1},
pages = {27-37},
title = {A partition theorem for α-large sets},
url = {http://eudml.org/doc/212379},
volume = {160},
year = {1999},
}

TY - JOUR
AU - Bigorajska, Teresa
AU - Kotlarski, Henryk
TI - A partition theorem for α-large sets
JO - Fundamenta Mathematicae
PY - 1999
VL - 160
IS - 1
SP - 27
EP - 37
AB -
LA - eng
KW - Hardy hierarchy; largeness; partition
UR - http://eudml.org/doc/212379
ER -

References

top
  1. [1] T. Bigorajska, H. Kotlarski and J. Schmerl, On regular interstices and selective types in countable arithmetically saturated models of Peano Arithmetic, Fund. Math. 158 (1998), 125-146. Zbl0920.03069
  2. [2] C E. A. Cichon, A short proof of two recently discovered independence results using recursion theoretic methods, Proc. Amer. Math. Soc. 87 (1983), 704-706. Zbl0512.03028
  3. [3] W M. V. H. Fairlough and S. S. Wainer, Ordinal complexity of recursive definitions, Inform. and Comput. 99 (1992), 123-153. Zbl0768.03027
  4. [4] R. Graham, B. Rothschild and J. Spencer, Ramsey Theory, 2nd ed., Wiley, 1990. 
  5. [5] J. Ketonen and R. Solovay, Rapidly growing Ramsey functions, Ann. of Math. 113 (1981), 267-314. Zbl0494.03027
  6. [6] H. Kotlarski and Z. Ratajczyk, Inductive full satisfaction classes, Ann. Pure Appl. Logic 47 (1990), 199-223. Zbl0708.03014
  7. [7] H. Kotlarski and Z. Ratajczyk, More on induction in the language with a satisfaction class, Z. Math. Logik 36 (1990), 441-454. Zbl0723.03033
  8. [8] W. Pohlers, Proof Theory, Lecture Notes in Math. 1047, Springer, 1989. 
  9. [9] Z. Ratajczyk, A combinatorial analysis of functions provably recursive in I Σ n , Fund. Math. 130 (1988), 191-213. 
  10. [10] Z. Ratajczyk, Subsystems of true arithmetic and hierarchies of functions, Ann. Pure Appl. Logic 64 (1993), 95-152. Zbl0802.03036
  11. [11] R. Sommer, Transfinite induction within Peano arithmetic, ibid. 76 (1995), 231-289. Zbl0858.03056

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.