Bohr compactifications of discrete structures

Joan Hart; Kenneth Kunen

Fundamenta Mathematicae (1999)

  • Volume: 160, Issue: 2, page 101-151
  • ISSN: 0016-2736

Abstract

top
We prove the following theorem: Given a⊆ω and 1 α < ω 1 C K , if for some η < 1 and all u ∈ WO of length η, a is Σ α 0 ( u ) , then a is Σ α 0 .We use this result to give a new, forcing-free, proof of Leo Harrington’s theorem: Σ 1 1 -Turing-determinacy implies the existence of 0 .

How to cite

top

Hart, Joan, and Kunen, Kenneth. "Bohr compactifications of discrete structures." Fundamenta Mathematicae 160.2 (1999): 101-151. <http://eudml.org/doc/212384>.

@article{Hart1999,
abstract = {We prove the following theorem: Given a⊆ω and $1 ≤ α < ω_1^\{CK\}$, if for some $η < ℵ_1$ and all u ∈ WO of length η, a is $Σ _α^0(u)$, then a is $Σ_α^0$.We use this result to give a new, forcing-free, proof of Leo Harrington’s theorem: $Σ_1^1 $-Turing-determinacy implies the existence of $0^\{#\}$. },
author = {Hart, Joan, Kunen, Kenneth},
journal = {Fundamenta Mathematicae},
keywords = {-structure; quasigroup; loop; Bohr compactifications},
language = {eng},
number = {2},
pages = {101-151},
title = {Bohr compactifications of discrete structures},
url = {http://eudml.org/doc/212384},
volume = {160},
year = {1999},
}

TY - JOUR
AU - Hart, Joan
AU - Kunen, Kenneth
TI - Bohr compactifications of discrete structures
JO - Fundamenta Mathematicae
PY - 1999
VL - 160
IS - 2
SP - 101
EP - 151
AB - We prove the following theorem: Given a⊆ω and $1 ≤ α < ω_1^{CK}$, if for some $η < ℵ_1$ and all u ∈ WO of length η, a is $Σ _α^0(u)$, then a is $Σ_α^0$.We use this result to give a new, forcing-free, proof of Leo Harrington’s theorem: $Σ_1^1 $-Turing-determinacy implies the existence of $0^{#}$.
LA - eng
KW - -structure; quasigroup; loop; Bohr compactifications
UR - http://eudml.org/doc/212384
ER -

References

top
  1. [Gn] R. O. Gandy, On a problem of Kleene's, Bull. Amer. Math. Soc. 66 (1960), 501-502. Zbl0097.24603
  2. [Hg] L. A. Harrington, Analytic determinacy and 0 , J. Symbolic Logic 43 (1978), 685-693. 
  3. [Hn] J. Harrison, Recursive pseudo-well-orderings, Trans. Amer. Math. Soc. 131 (1968), 526-543. Zbl0186.01101
  4. [Kn] A. Kanamori, The Higher Infinite, 2nd printing, Springer, Berlin, 1997. 
  5. [Kc] A. S. Kechris, Measure and category in effective descriptive set-theory, Ann. Math. Logic 5 (1973), 337-384. Zbl0277.02019
  6. [MW] R. Mansfield and G. Weitkamp, Recursive Aspects of Descriptive Set Theory, Oxford Univ. Press, Oxford, 1985. Zbl0655.03032
  7. [Mr1] D. A. Martin, The axiom of determinacy and reduction principles in the analytical hierarchy, Bull. Amer. Math. Soc. 74 (1968), 687-689. 
  8. [Mr2] D. A. Martin, Measurable cardinals and analytic games, Fund. Math. 66 (1970), 287-291. Zbl0216.01401
  9. [Ms] Y. N. Moschovakis, Descriptive Set Theory, North-Holland, Amsterdam, 1980. 
  10. [Sc1] G. E. Sacks, Countable admissible ordinals and hyperdegrees, Adv. Math. 19 (1976), 213-262. Zbl0439.03027
  11. [Sc2] G. E. Sacks, Higher Recursion Theory, Springer, Berlin, 1990. 
  12. [Sm] R. L. Sami, Questions in descriptive set theory and the determinacy of infinite games, Ph.D. Dissertation, Univ. of California, Berkeley, 1976. 
  13. [Sl] J. Steel, Forcing with tagged trees, Ann. Math. Logic 15 (1978), 55-74. Zbl0404.03020
  14. [Sr] J. Stern, Evaluation du rang de Borel de certains ensembles, C. R. Acad. Sci. Paris Sér. I 286 (1978), 855-857. Zbl0377.04007

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.