The cobordism of Real manifolds

Po Hu

Fundamenta Mathematicae (1999)

  • Volume: 161, Issue: 1-2, page 119-136
  • ISSN: 0016-2736

Abstract

top
We calculate completely the Real cobordism groups, introduced by Landweber and Fujii, in terms of homotopy groups of known spectra.

How to cite

top

Hu, Po. "The cobordism of Real manifolds." Fundamenta Mathematicae 161.1-2 (1999): 119-136. <http://eudml.org/doc/212395>.

@article{Hu1999,
abstract = {We calculate completely the Real cobordism groups, introduced by Landweber and Fujii, in terms of homotopy groups of known spectra.},
author = {Hu, Po},
journal = {Fundamenta Mathematicae},
keywords = {real cobordism; real manifolds},
language = {eng},
number = {1-2},
pages = {119-136},
title = {The cobordism of Real manifolds},
url = {http://eudml.org/doc/212395},
volume = {161},
year = {1999},
}

TY - JOUR
AU - Hu, Po
TI - The cobordism of Real manifolds
JO - Fundamenta Mathematicae
PY - 1999
VL - 161
IS - 1-2
SP - 119
EP - 136
AB - We calculate completely the Real cobordism groups, introduced by Landweber and Fujii, in terms of homotopy groups of known spectra.
LA - eng
KW - real cobordism; real manifolds
UR - http://eudml.org/doc/212395
ER -

References

top
  1. [1] S. Araki, Orientations in τ-cohomology theories, Japan J. Math. 5 (1979), 403-430. Zbl0443.55003
  2. [2] S. Araki and K. Iriye, Equivariant stable homotopy groups of spheres with involutions, I, Osaka J. Math. 19 (1982), 1-55. Zbl0488.55012
  3. [3] S. Araki and M. Murayama, τ-cohomology theories, Japan J. Math. 4 (1978), 363-416. 
  4. [4] M. F. Atiyah, K-theory and Reality, Quart. J. Math. Oxford (2) 17 (1966), 367-386. Zbl0146.19101
  5. [5] M. F. Atiyah, R. Bott and A. Shapiro, Clifford modules, Topology 3 (1964), suppl. 1, 3-38. 
  6. [6] M. F. Atiyah and G. B. Segal, Equivariant K-theory and completion, J. Differential Geom. 3 (1969) 1-18. 
  7. [7] P. E. Conner and E. E. Floyd, Differentiable Periodic Maps, Academic Press, New York, 1964. Zbl0125.40103
  8. [8] S. R. Costenoble and S. Waner, G-transversality revisited, Proc. Amer. Math. Soc. 116 (1992), 535-546. 
  9. [9] T. tom Dieck, Bordisms of G-manifolds and integrality theorems, Topology 9 (1970), 345-358. Zbl0209.27504
  10. [10] M. Fujii, Cobordism theory with reality, Math. J. Okayama Univ. 18 (1976), 171-188. Zbl0334.55017
  11. [11] M. Fujii, On the relation of real cobordism to KR-theory, ibid. 19 (1977), 147-158. Zbl0375.55004
  12. [12] M. Fujii, Bordism theory with reality and duality theorem of Poincaré type, ibid. 30 (1988), 151-160. Zbl0702.57016
  13. [13] I. Kriz, A Real analogue of the Adams-Novikov spectral sequence, in preparation. Zbl0967.55010
  14. [14] P. S. Landweber, Fixed point free conjugations on complex manifolds, Ann. of Math. (2) 86 (1967), 491-502. Zbl0179.28503
  15. [15] P. S. Landweber, Conjugations on complex manifolds and equivariant homotopy of MU, Bull. Amer. Math. Soc. 74 (1968), 271-274. Zbl0181.26801
  16. [16] L. G. Lewis, J. P. May and M. Steinberger, Equivariant Stable Homotopy Theory, with contributions by J. E. McClure, Lecture Notes in Math. 1213, Springer, Berlin, 1986. 
  17. [17] J. Milnor, Differentiable Topology, Princeton Univ. Press, 1958. 
  18. [18] J. Milnor and J. W. Stasheff, Characteristic Classes, Princeton Univ. Press and Univ. of Tokyo Press, 1974. 
  19. [19] R. E. Stong, Notes on Cobordism Theory, Princeton Univ. Press, 1968. Zbl0181.26604
  20. [20] A. G. Wasserman, Equivariant differential topology, Topology 8 (1969), 127-150. Zbl0215.24702

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.